These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8622575)

  • 1. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man.
    Frahm J; Krüger G; Merboldt KD; Kleinschmidt A
    Magn Reson Med; 1996 Feb; 35(2):143-8. PubMed ID: 8622575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic NMR studies of perfusion and oxidative metabolism during focal brain activation.
    Frahm J; Krueger G; Merboldt KD; Kleinschmidt A
    Adv Exp Med Biol; 1997; 413():195-203. PubMed ID: 9238500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic MRI sensitized to cerebral blood oxygenation and flow during sustained activation of human visual cortex.
    Krüger G; Kleinschmidt A; Frahm J
    Magn Reson Med; 1996 Jun; 35(6):797-800. PubMed ID: 8744004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decrease of glucose in the human visual cortex during photic stimulation.
    Merboldt KD; Bruhn H; Hänicke W; Michaelis T; Frahm J
    Magn Reson Med; 1992 May; 25(1):187-94. PubMed ID: 1593951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation.
    Chen W; Novotny EJ; Zhu XH; Rothman DL; Shulman RG
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):9896-900. PubMed ID: 8234332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR imaging signal response to sustained stimulation in human visual cortex.
    Hathout GM; Kirlew KA; So GJ; Hamilton DR; Zhang JX; Sinha U; Sinha S; Sayre J; Gozal D; Harper RM
    J Magn Reson Imaging; 1994; 4(4):537-43. PubMed ID: 7949678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy.
    Sappey-Marinier D; Calabrese G; Fein G; Hugg JW; Biggins C; Weiner MW
    J Cereb Blood Flow Metab; 1992 Jul; 12(4):584-92. PubMed ID: 1618937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurometabolic coupling between neural activity, glucose, and lactate in activated visual cortex.
    Li B; Freeman RD
    J Neurochem; 2015 Nov; 135(4):742-54. PubMed ID: 25930947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limits on activation-induced temperature and metabolic changes in the human primary visual cortex.
    Katz-Brull R; Alsop DC; Marquis RP; Lenkinski RE
    Magn Reson Med; 2006 Aug; 56(2):348-55. PubMed ID: 16791859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous monitoring of dynamic changes in cerebral blood flow and oxygenation during sustained activation of the human visual cortex.
    Krüger G; Kastrup A; Takahashi A; Glover GH
    Neuroreport; 1999 Sep; 10(14):2939-43. PubMed ID: 10549801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal patterns of uncoupling between oxidative metabolism and regional cerebral blood flow demonstrated by functional magnetic resonance imaging.
    Hedera P; Wu D; Lewin JS; Miller D; Lerner AJ; Friedland RP
    Invest Radiol; 1995 Nov; 30(11):625-33. PubMed ID: 8557502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex.
    Mangia S; Tkác I; Gruetter R; Van de Moortele PF; Maraviglia B; Uğurbil K
    J Cereb Blood Flow Metab; 2007 May; 27(5):1055-63. PubMed ID: 17033694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-neuron activity and tissue oxygenation in the cerebral cortex.
    Thompson JK; Peterson MR; Freeman RD
    Science; 2003 Feb; 299(5609):1070-2. PubMed ID: 12586942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial encephalomyopathy: elevated visual cortex lactate unresponsive to photic stimulation--a localized 1H-MRS study.
    Kuwabara T; Watanabe H; Tanaka K; Tsuji S; Ohkubo M; Ito T; Sakai K; Yuasa T
    Neurology; 1994 Mar; 44(3 Pt 1):557-9. PubMed ID: 8145933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of cerebral oxidative metabolism with breath holding and fMRI.
    Kastrup A; Krüger G; Glover GH; Moseley ME
    Magn Reson Med; 1999 Sep; 42(3):608-11. PubMed ID: 10467308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoglycemia reduces the blood-oxygenation level dependent signal in primary auditory and visual cortex: a functional magnetic resonance imaging study.
    Driesen NR; Goldberg PA; Anderson AW; Tang L; Flanagan DE; Sherwin RS; Gore JC
    J Neurosci Res; 2007 Feb; 85(3):575-82. PubMed ID: 17154420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonoxidative glucose consumption during focal physiologic neural activity.
    Fox PT; Raichle ME; Mintun MA; Dence C
    Science; 1988 Jul; 241(4864):462-4. PubMed ID: 3260686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The in vivo neuron-to-astrocyte lactate shuttle in human brain: evidence from modeling of measured lactate levels during visual stimulation.
    Mangia S; Simpson IA; Vannucci SJ; Carruthers A
    J Neurochem; 2009 May; 109 Suppl 1(Suppl 1):55-62. PubMed ID: 19393009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation.
    Kwong KK; Belliveau JW; Chesler DA; Goldberg IE; Weisskoff RM; Poncelet BP; Kennedy DN; Hoppel BE; Cohen MS; Turner R
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5675-9. PubMed ID: 1608978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased cortical oxidative metabolism due to sensory stimulation: implications for functional brain imaging.
    Vanzetta I; Grinvald A
    Science; 1999 Nov; 286(5444):1555-8. PubMed ID: 10567261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.