These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8622676)

  • 1. Functional domains in the Mig1 repressor.
    Ostling J; Carlberg M; Ronne H
    Mol Cell Biol; 1996 Mar; 16(3):753-61. PubMed ID: 8622676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of a flanking AT-rich region in target site recognition by the GC box-binding zinc finger protein MIG1.
    Lundin M; Nehlin JO; Ronne H
    Mol Cell Biol; 1994 Mar; 14(3):1979-85. PubMed ID: 8114729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J; Trumbly RJ
    Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae.
    DeVit MJ; Johnston M
    Curr Biol; 1999 Nov; 9(21):1231-41. PubMed ID: 10556086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative control of the Mig1p repressor by Snf1p-dependent phosphorylation in the absence of glucose.
    Ostling J; Ronne H
    Eur J Biochem; 1998 Feb; 252(1):162-8. PubMed ID: 9523726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae.
    Lutfiyya LL; Iyer VR; DeRisi J; DeVit MJ; Brown PO; Johnston M
    Genetics; 1998 Dec; 150(4):1377-91. PubMed ID: 9832517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Four hydrophobic amino acid residues in the C-terminal effector domain of the yeast Mig1p repressor are important for its in vivo activity.
    Ostling J; Cassart JP; Vandenhaute J; Ronne H
    Mol Gen Genet; 1998 Nov; 260(2-3):269-79. PubMed ID: 9862481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic release from glucose repression by mig1 and ssn mutations in Saccharomyces cerevisiae.
    Vallier LG; Carlson M
    Genetics; 1994 May; 137(1):49-54. PubMed ID: 8056322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis in three fungi reveals structurally and functionally conserved regions in the Mig1 repressor.
    Cassart JP; Ostling J; Ronne H; Vandenhaute J
    Mol Gen Genet; 1997 Jun; 255(1):9-18. PubMed ID: 9230894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae.
    Treitel MA; Kuchin S; Carlson M
    Mol Cell Biol; 1998 Nov; 18(11):6273-80. PubMed ID: 9774644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of MIG1 and SNF1 deletion on simultaneous utilization of glucose and xylose by Saccharomyces cerevisiae].
    Cai Y; Qi X; Qi Q; Lin Y; Wang Z; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):54-67. PubMed ID: 29380571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription.
    Nehlin JO; Carlberg M; Ronne H
    Nucleic Acids Res; 1992 Oct; 20(20):5271-8. PubMed ID: 1437546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combinatorial control of gene expression by the three yeast repressors Mig1, Mig2 and Mig3.
    Westholm JO; Nordberg N; Murén E; Ameur A; Komorowski J; Ronne H
    BMC Genomics; 2008 Dec; 9():601. PubMed ID: 19087243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins.
    Nehlin JO; Ronne H
    EMBO J; 1990 Sep; 9(9):2891-8. PubMed ID: 2167835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Snf1 kinase controls glucose repression in yeast by modulating interactions between the Mig1 repressor and the Cyc8-Tup1 co-repressor.
    Papamichos-Chronakis M; Gligoris T; Tzamarias D
    EMBO Rep; 2004 Apr; 5(4):368-72. PubMed ID: 15031717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Snf1 kinase of the filamentous fungus Hypocrea jecorina phosphorylates regulation-relevant serine residues in the yeast carbon catabolite repressor Mig1 but not in the filamentous fungal counterpart Cre1.
    Cziferszky A; Seiboth B; Kubicek CP
    Fungal Genet Biol; 2003 Nov; 40(2):166-75. PubMed ID: 14516769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O; Vincent O; Gancedo JM
    Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae.
    Estruch F; Carlson M
    Mol Cell Biol; 1993 Jul; 13(7):3872-81. PubMed ID: 8321194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of the MIG1 gene from Candida albicans and effects of its disruption on catabolite repression.
    Zaragoza O; Rodríguez C; Gancedo C
    J Bacteriol; 2000 Jan; 182(2):320-6. PubMed ID: 10629176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein.
    Treitel MA; Carlson M
    Proc Natl Acad Sci U S A; 1995 Apr; 92(8):3132-6. PubMed ID: 7724528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.