These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 8622797)

  • 1. A strategy for Compton scatter correction in brain SPECT by orthogonal image expansions assisted by neural networks.
    Sychra JJ; Blend MJ
    Neurol Res; 1995 Dec; 17(6):435-9. PubMed ID: 8622797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compton scatter correction in case of multiple crosstalks in SPECT imaging.
    Sychra JJ; Blend MJ; Jobe TH
    Neurol Res; 1996 Feb; 18(1):31-2. PubMed ID: 8714533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of dual and triple energy window scatter correction methods on image quality in liver scintigraphy.
    Perisinakis K; Karkavitsas N; Damilakis J; Gourtsoyiannis N
    Nuklearmedizin; 1998; 37(7):239-44. PubMed ID: 9830614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Estimation of scatter component in SPECT planar image using a Monte Carlo method].
    Ogawa K; Harata Y; Ichihara T; Kubo A; Hashimoto S
    Kaku Igaku; 1990 May; 27(5):467-76. PubMed ID: 2395230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predictor-corrector with cubic spline method for spectrum estimation in Compton scatter correction of SPECT.
    Chen EQ; Lam CF
    Comput Biol Med; 1994 May; 24(3):229-42. PubMed ID: 7924268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid scatter correction applied to quantitative holmium-166 SPECT.
    de Wit TC; Xiao J; Nijsen JF; van het Schip FD; Staelens SG; van Rijk PP; Beekman FJ
    Phys Med Biol; 2006 Oct; 51(19):4773-87. PubMed ID: 16985270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of different energy window subtraction methods to correct for scatter and downscatter in I-123 SPECT imaging.
    Lagerburg V; de Nijs R; Holm S; Svarer C
    Nucl Med Commun; 2012 Jul; 33(7):708-18. PubMed ID: 22513883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-based scatter correction for 3-D PET scanners using NaI(T1) detectors.
    Adam LE; Karp JS; Freifelder R
    IEEE Trans Med Imaging; 2000 May; 19(5):513-21. PubMed ID: 11021694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Compton-scatter correction using the triple energy window (TEW) method in conventional single photon emission computed tomography without TEW acquisition hardware].
    Fujioka H; Inoue T; Ishimaru Y; Akamune A; Murase K; Tanada S; Ikezoe J
    Kaku Igaku; 1997 Apr; 34(4):251-8. PubMed ID: 9183149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spatially varying compton scatter correction for SPECT utilizing the integral Klein-Nishina cross section.
    Jonsson C; Larsson SA
    Phys Med Biol; 2001 Jul; 46(7):1767-83. PubMed ID: 11474924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of scatter correction on quantification of myocardial SPECT and application to dual-energy acquisition using triple-energy window method].
    Nakajima K; Matsudaira M; Yamada M; Taki J; Tonami N; Hisada K
    Kaku Igaku; 1995 Sep; 32(9):959-67. PubMed ID: 8523844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of energy-weighted acquisition in SPECT using ROC analysis.
    Staff RT; Gemmell HG; Sharp PF
    J Nucl Med; 1995 Dec; 36(12):2352-5. PubMed ID: 8523131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized dual-energy-window scatter compensation in spatially varying media for SPECT.
    Smith MF; Jaszczak RJ
    Phys Med Biol; 1994 Mar; 39(3):531-46. PubMed ID: 15551596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of three scatter correction methods based on estimation of photopeak scatter spectrum in SPECT imaging: a simulation study.
    Noori-Asl M; Sadremomtaz A; Bitarafan-Rajabi A
    Phys Med; 2014 Dec; 30(8):947-53. PubMed ID: 24985135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compton scatter compensation using the triple-energy window method for single- and dual-isotope SPECT.
    Ichihara T; Ogawa K; Motomura N; Kubo A; Hashimoto S
    J Nucl Med; 1993 Dec; 34(12):2216-21. PubMed ID: 8254414
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Quantitative assessment of scattered photons considering skull bone in brain SPECT].
    Maeda S; Ogawa K
    Kaku Igaku; 1994 May; 31(5):431-9. PubMed ID: 8028215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations.
    Buvat I; Rodriguez-Villafuerte M; Todd-Pokropek A; Benali H; Di Paola R
    J Nucl Med; 1995 Aug; 36(8):1476-88. PubMed ID: 7629598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of compton scatter in quantitative brain SPECT].
    Iida H; Takahashi M; Motomura N; Hachiya T; Nakagawara J
    Kaku Igaku; 1996 Feb; 33(2):143-51. PubMed ID: 8721102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast analytical scatter estimation using graphics processing units.
    Ingleby H; Lippuner J; Rickey DW; Li Y; Elbakri I
    J Xray Sci Technol; 2015; 23(2):119-33. PubMed ID: 25882725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo evaluation of Compton scatter subtraction in single photon emission computed tomography.
    Floyd CE; Jaszczak RJ; Harris CC; Greer KL; Coleman RE
    Med Phys; 1985; 12(6):776-8. PubMed ID: 3878451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.