These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8622829)

  • 1. Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals.
    Schwartz GJ; Moran TH
    Neurosci Biobehav Rev; 1996; 20(1):47-56. PubMed ID: 8622829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of vagal afferent responses to duodenal loads and exogenous CCK in rats.
    Schwartz GJ; Tougas G; Moran TH
    Peptides; 1995; 16(4):707-11. PubMed ID: 7479306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1993 Oct; 265(4 Pt 2):R872-6. PubMed ID: 8238459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CCK elicits and modulates vagal afferent activity arising from gastric and duodenal sites.
    Schwartz GJ; Moran TH
    Ann N Y Acad Sci; 1994 Mar; 713():121-8. PubMed ID: 8185153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integration of vagal afferent responses to gastric loads and cholecystokinin in rats.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1991 Jul; 261(1 Pt 2):R64-9. PubMed ID: 1858957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Duodenal nutrient exposure elicits nutrient-specific gut motility and vagal afferent signals in rat.
    Schwartz GJ; Moran TH
    Am J Physiol; 1998 May; 274(5):R1236-42. PubMed ID: 9644035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Within-meal gut feedback signaling.
    Moran TH; Ladenheim EE; Schwartz GJ
    Int J Obes Relat Metab Disord; 2001 Dec; 25 Suppl 5():S39-41. PubMed ID: 11840213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin.
    Peters JH; Simasko SM; Ritter RC
    Physiol Behav; 2006 Nov; 89(4):477-85. PubMed ID: 16872644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of gastrointestinal vagal afferents in the control of food intake: current prospects.
    Schwartz GJ
    Nutrition; 2000 Oct; 16(10):866-73. PubMed ID: 11054591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected ghrelin in the rat.
    Arnold M; Mura A; Langhans W; Geary N
    J Neurosci; 2006 Oct; 26(43):11052-60. PubMed ID: 17065447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integration of postprandial function in the proximal gastrointestinal tract. Role of CCK and sensory pathways.
    Raybould HE; Lloyd KC
    Ann N Y Acad Sci; 1994 Mar; 713():143-56. PubMed ID: 8185155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load-sensitive rat gastric vagal afferents encode volume but not gastric nutrients.
    Mathis C; Moran TH; Schwartz GJ
    Am J Physiol; 1998 Feb; 274(2):R280-6. PubMed ID: 9486282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capsaicin-sensitive vagal afferents and CCK in inhibition of gastric motor function induced by intestinal nutrients.
    Raybould HE
    Peptides; 1991; 12(6):1279-83. PubMed ID: 1815214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin.
    Moran TH; Baldessarini AR; Salorio CF; Lowery T; Schwartz GJ
    Am J Physiol; 1997 Apr; 272(4 Pt 2):R1245-51. PubMed ID: 9140026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pharmacological dissociation of responses to CCK and gastric loads in rat mechanosensitive vagal afferents.
    Schwartz GJ; McHugh PR; Moran TH
    Am J Physiol; 1994 Jul; 267(1 Pt 2):R303-8. PubMed ID: 8048636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pancreatic secretion stimulated by CCK is not mediated by capsaicin-sensitive vagal afferent pathway in awake rats.
    Guan D; Phillips WT; Green GM
    Am J Physiol; 1996 May; 270(5 Pt 1):G881-6. PubMed ID: 8967501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of the gastric vagal afferent activity to cholecystokinin in rats lacking type A cholecystokinin receptors.
    Kurosawa M; Bucinskaite V; Taniguchi T; Miyasaka K; Funakoshi A; Lundeberg T
    J Auton Nerv Syst; 1999 Jan; 75(1):51-9. PubMed ID: 9935269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pancreatic secretion evoked by cholecystokinin and non-cholecystokinin-dependent duodenal stimuli via vagal afferent fibres in the rat.
    Li Y; Owyang C
    J Physiol; 1996 Aug; 494 ( Pt 3)(Pt 3):773-82. PubMed ID: 8865073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles for gut vagal sensory signals in determining energy availability and energy expenditure.
    Schwartz GJ
    Brain Res; 2018 Aug; 1693(Pt B):151-153. PubMed ID: 29903617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ.
    Schwartz GJ; Moran TH; White WO; Ladenheim EE
    Am J Physiol; 1997 Jun; 272(6 Pt 2):R1726-33. PubMed ID: 9227583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.