BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 8622921)

  • 21. Binding of phosphate and pyrophosphate ions at the active site of human angiogenin as revealed by X-ray crystallography.
    Leonidas DD; Chavali GB; Jardine AM; Li S; Shapiro R; Acharya KR
    Protein Sci; 2001 Aug; 10(8):1669-76. PubMed ID: 11468363
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual site model for the organogenic activity of angiogenin.
    Hallahan TW; Shapiro R; Vallee BL
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2222-6. PubMed ID: 2006161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A phosphate-binding subsite in bovine pancreatic ribonuclease A can be converted into a very efficient catalytic site.
    Moussaoui M; Cuchillo CM; Nogués MV
    Protein Sci; 2007 Jan; 16(1):99-109. PubMed ID: 17192592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of mouse angiogenin-related protein: implications for functional studies on angiogenin.
    Nobile V; Vallee BL; Shapiro R
    Proc Natl Acad Sci U S A; 1996 Apr; 93(9):4331-5. PubMed ID: 8633065
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular recognition of human angiogenin by placental ribonuclease inhibitor--an X-ray crystallographic study at 2.0 A resolution.
    Papageorgiou AC; Shapiro R; Acharya KR
    EMBO J; 1997 Sep; 16(17):5162-77. PubMed ID: 9311977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of small-molecule inhibitors of human angiogenin and characterization of their binding interactions guided by computational docking.
    Jenkins JL; Shapiro R
    Biochemistry; 2003 Jun; 42(22):6674-87. PubMed ID: 12779322
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Replacing a surface loop endows ribonuclease A with angiogenic activity.
    Raines RT; Toscano MP; Nierengarten DM; Ha JH; Auerbach R
    J Biol Chem; 1995 Jul; 270(29):17180-4. PubMed ID: 7615514
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cleavage of 3',5'-pyrophosphate-linked dinucleotides by ribonuclease A and angiogenin.
    Jardine AM; Leonidas DD; Jenkins JL; Park C; Raines RT; Acharya KR; Shapiro R
    Biochemistry; 2001 Aug; 40(34):10262-72. PubMed ID: 11513604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Refined crystal structures of native human angiogenin and two active site variants: implications for the unique functional properties of an enzyme involved in neovascularisation during tumour growth.
    Leonidas DD; Shapiro R; Allen SC; Subbarao GV; Veluraja K; Acharya KR
    J Mol Biol; 1999 Jan; 285(3):1209-33. PubMed ID: 9918722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Valine 108, a chain-folding initiation site-belonging residue, crucial for the ribonuclease A stability.
    Coll MG; Protasevich II; Torrent J; Ribó M; Lobachov VM; Makarov AA; Vilanova M
    Biochem Biophys Res Commun; 1999 Nov; 265(2):356-60. PubMed ID: 10558871
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organogenesis and angiogenin.
    Vallee BL; Riordan JF
    Cell Mol Life Sci; 1997 Oct; 53(10):803-15. PubMed ID: 9413551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional solution structure of human angiogenin determined by 1H,15N-NMR spectroscopy--characterization of histidine protonation states and pKa values.
    Lequin O; Thüring H; Robin M; Lallemand JY
    Eur J Biochem; 1997 Dec; 250(3):712-26. PubMed ID: 9461294
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The homologous angiogenin and ribonuclease N-terminal fragments fold into very similar helices when isolated.
    Blanco FJ; Jiménez A; Rico M; Santoro J; Herranz J; Nieto JL
    Biochem Biophys Res Commun; 1992 Feb; 182(3):1491-8. PubMed ID: 1540192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of human angiogenin reveals the structural basis for its functional divergence from ribonuclease.
    Acharya KR; Shapiro R; Allen SC; Riordan JF; Vallee BL
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):2915-9. PubMed ID: 8159679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Angiogenin single-chain immunofusions: influence of peptide linkers and spacers between fusion protein domains.
    Newton DL; Xue Y; Olson KA; Fett JW; Rybak SM
    Biochemistry; 1996 Jan; 35(2):545-53. PubMed ID: 8555226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Network of long-range concerted chemical shift displacements upon ligand binding to human angiogenin.
    Gagné D; Narayanan C; Doucet N
    Protein Sci; 2015 Apr; 24(4):525-33. PubMed ID: 25450558
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superadditive and subadditive effects of "hot spot" mutations within the interfaces of placental ribonuclease inhibitor with angiogenin and ribonuclease A.
    Chen CZ; Shapiro R
    Biochemistry; 1999 Jul; 38(29):9273-85. PubMed ID: 10413501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The ribonucleolytic activity of angiogenin.
    Leland PA; Staniszewski KE; Park C; Kelemen BR; Raines RT
    Biochemistry; 2002 Jan; 41(4):1343-50. PubMed ID: 11802736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatically active angiogenin/ribonuclease A hybrids formed by peptide interchange.
    Harper JW; Auld DS; Riordan JF; Vallee BL
    Biochemistry; 1988 Jan; 27(1):219-26. PubMed ID: 3349027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.