These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 862328)
1. Functional and structural changes after disuse of human muscle. Sargeant AJ; Davies CT; Edwards RH; Maunder C; Young A Clin Sci Mol Med; 1977 Apr; 52(4):337-42. PubMed ID: 862328 [TBL] [Abstract][Full Text] [Related]
2. The effects of immobilization, after lower leg fracture, on the contractile properties of human triceps surae. White MJ; Davies CT Clin Sci (Lond); 1984 Mar; 66(3):277-82. PubMed ID: 6692659 [TBL] [Abstract][Full Text] [Related]
3. Aerobic power prediction in patients recovering from limb injury. Davies CT; Sargeant AJ Arch Phys Med Rehabil; 1975 Aug; 56(8):340-5. PubMed ID: 1156126 [TBL] [Abstract][Full Text] [Related]
4. Changes in human muscle architecture in disuse-atrophy evaluated by ultrasound imaging. Narici M; Cerretelli P J Gravit Physiol; 1998 Jul; 5(1):P73-4. PubMed ID: 11542371 [TBL] [Abstract][Full Text] [Related]
5. Temporal Muscle-specific Disuse Atrophy during One Week of Leg Immobilization. Kilroe SP; Fulford J; Jackman SR; VAN Loon LJC; Wall BT Med Sci Sports Exerc; 2020 Apr; 52(4):944-954. PubMed ID: 31688656 [TBL] [Abstract][Full Text] [Related]
6. Effects of limb immobilization on cytochrome c oxidase activity and GLUT4 and GLUT5 protein expression in human skeletal muscle. Blakemore SJ; Rickhuss PK; Watt PW; Rennie MJ; Hundal HS Clin Sci (Lond); 1996 Nov; 91(5):591-9. PubMed ID: 8942398 [TBL] [Abstract][Full Text] [Related]
7. The effect of disuse muscular atrophy on the forces generated in dynamic exercise. Sargeant AJ; Davies CT Clin Sci Mol Med; 1977 Aug; 53(2):183-8. PubMed ID: 891107 [TBL] [Abstract][Full Text] [Related]
8. Effects of cast-mediated immobilization on bone mineral mass at various sites in adolescents with lower-extremity fracture. Ceroni D; Martin X; Delhumeau C; Rizzoli R; Kaelin A; Farpour-Lambert N J Bone Joint Surg Am; 2012 Feb; 94(3):208-16. PubMed ID: 22298052 [TBL] [Abstract][Full Text] [Related]
9. The decline of aerobic capacity and muscle strength following fractures of the lower limb. Imms FJ; Prestidge SP; Mayes FB Injury; 1980 Feb; 11(3):219-24. PubMed ID: 7364469 [TBL] [Abstract][Full Text] [Related]
10. A longitudinal MRI study of muscle atrophy during lower leg immobilization following ankle fracture. Psatha M; Wu Z; Gammie FM; Ratkevicius A; Wackerhage H; Lee JH; Redpath TW; Gilbert FJ; Ashcroft GP; Meakin JR; Aspden RM J Magn Reson Imaging; 2012 Mar; 35(3):686-95. PubMed ID: 22045592 [TBL] [Abstract][Full Text] [Related]
11. Human skeletal muscle fibre contractile properties and proteomic profile: adaptations to 3 weeks of unilateral lower limb suspension and active recovery. Brocca L; Longa E; Cannavino J; Seynnes O; de Vito G; McPhee J; Narici M; Pellegrino MA; Bottinelli R J Physiol; 2015 Dec; 593(24):5361-85. PubMed ID: 26369674 [TBL] [Abstract][Full Text] [Related]
12. Changes in physiological performance of the lower limb after fracture and subsequent rehabilitation. Davies CT; Sargeant JA Clin Sci Mol Med; 1975 Feb; 48(2):107-14. PubMed ID: 1116330 [TBL] [Abstract][Full Text] [Related]
13. Thigh muscle strength in below-knee amputees. Renström P; Grimby G; Larsson E Scand J Rehabil Med Suppl; 1983; 9():163-73. PubMed ID: 6585938 [TBL] [Abstract][Full Text] [Related]
14. Thigh muscle atrophy in below-knee amputees. Renström P; Grimby G; Morelli B; Palmertz B Scand J Rehabil Med Suppl; 1983; 9():150-62. PubMed ID: 6585937 [TBL] [Abstract][Full Text] [Related]
15. Effect of immobilization of short duration on the muscle fibre size. Lindboe CF; Platou CS Clin Physiol; 1984 Apr; 4(2):183-8. PubMed ID: 6233065 [TBL] [Abstract][Full Text] [Related]
16. Substantial skeletal muscle loss occurs during only 5 days of disuse. Wall BT; Dirks ML; Snijders T; Senden JM; Dolmans J; van Loon LJ Acta Physiol (Oxf); 2014 Mar; 210(3):600-11. PubMed ID: 24168489 [TBL] [Abstract][Full Text] [Related]
17. Sex-based differences in skeletal muscle function and morphology with short-term limb immobilization. Yasuda N; Glover EI; Phillips SM; Isfort RJ; Tarnopolsky MA J Appl Physiol (1985); 2005 Sep; 99(3):1085-92. PubMed ID: 15860685 [TBL] [Abstract][Full Text] [Related]
18. Ultrasound changes to intramuscular architecture of the quadriceps following intramedullary nailing. Bleakney R; Maffulli N J Sports Med Phys Fitness; 2002 Mar; 42(1):120-5. PubMed ID: 11832886 [TBL] [Abstract][Full Text] [Related]
19. Effects of exercise therapy on total and component tissue leg volumes of patients undergoing rehabilitation from lower limb injury. Davies CT; Sargeant AJ Ann Hum Biol; 1975 Oct; 2(4):327-37. PubMed ID: 1052753 [TBL] [Abstract][Full Text] [Related]
20. Leucine Supplementation Does Not Attenuate Skeletal Muscle Loss during Leg Immobilization in Healthy, Young Men. Backx EMP; Horstman AMH; Marzuca-Nassr GN; van Kranenburg J; Smeets JS; Fuchs CJ; Janssen AAW; de Groot LCPGM; Snijders T; Verdijk LB; van Loon LJC Nutrients; 2018 May; 10(5):. PubMed ID: 29772844 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]