BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 8623613)

  • 1. In vivo stationary flux analysis by 13C labeling experiments.
    Wiechert W; de Graaf AA
    Adv Biochem Eng Biotechnol; 1996; 54():109-54. PubMed ID: 8623613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytic and systematic framework for estimating metabolic flux ratios from 13C tracer experiments.
    Rantanen A; Rousu J; Jouhten P; Zamboni N; Maaheimo H; Ukkonen E
    BMC Bioinformatics; 2008 Jun; 9():266. PubMed ID: 18534038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems.
    Wiechert W; Möllney M; Isermann N; Wurzel M; de Graaf AA
    Biotechnol Bioeng; 1999; 66(2):69-85. PubMed ID: 10567066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments.
    Wiechert W; de Graaf AA
    Biotechnol Bioeng; 1997 Jul; 55(1):101-17. PubMed ID: 18636449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production process monitoring by serial mapping of microbial carbon flux distributions using a novel Sensor Reactor approach: II--(13)C-labeling-based metabolic flux analysis and L-lysine production.
    Drysch A; El Massaoudi M; Mack C; Takors R; de Graaf AA; Sahm H
    Metab Eng; 2003 Apr; 5(2):96-107. PubMed ID: 12850132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-stationary (13)C-metabolic flux ratio analysis.
    Hörl M; Schnidder J; Sauer U; Zamboni N
    Biotechnol Bioeng; 2013 Dec; 110(12):3164-76. PubMed ID: 23860906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C metabolic flux analysis: optimal design of isotopic labeling experiments.
    Antoniewicz MR
    Curr Opin Biotechnol; 2013 Dec; 24(6):1116-21. PubMed ID: 23453397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic isotope effects significantly influence intracellular metabolite (13) C labeling patterns and flux determination.
    Wasylenko TM; Stephanopoulos G
    Biotechnol J; 2013 Sep; 8(9):1080-9. PubMed ID: 23828762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic
    Abernathy M; Wan N; Shui W; Tang YJ
    Methods Mol Biol; 2019; 1859():301-316. PubMed ID: 30421238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental design principles for isotopically instationary 13C labeling experiments.
    Nöh K; Wiechert W
    Biotechnol Bioeng; 2006 Jun; 94(2):234-51. PubMed ID: 16598793
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designer labels for plant metabolism: statistical design of isotope labeling experiments for improved quantification of flux in complex plant metabolic networks.
    Nargund S; Sriram G
    Mol Biosyst; 2013 Jan; 9(1):99-112. PubMed ID: 23114423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of intracellular metabolic fluxes from fractional enrichment and 13C-13C coupling constraints on the isotopomer distribution in labeled biomass components.
    Schmidt K; Nørregaard LC; Pedersen B; Meissner A; Duus JO; Nielsen JO; Villadsen J
    Metab Eng; 1999 Apr; 1(2):166-79. PubMed ID: 10935929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic simulation algorithm for isotope-based dynamic flux analysis.
    Thommen Q; Hurbain J; Pfeuty B
    Metab Eng; 2023 Jan; 75():100-109. PubMed ID: 36402409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional (13)C labeling, two-dimensional [(13)C, (1)H] nuclear magnetic resonance, and comprehensive isotopomer balancing.
    Sriram G; Fulton DB; Iyer VV; Peterson JM; Zhou R; Westgate ME; Spalding MH; Shanks JV
    Plant Physiol; 2004 Oct; 136(2):3043-57. PubMed ID: 15466217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flux and reflux: metabolite reflux in plant suspension cells and its implications for isotope-assisted metabolic flux analysis.
    Nargund S; Misra A; Zhang X; Coleman GD; Sriram G
    Mol Biosyst; 2014 Jun; 10(6):1496-508. PubMed ID: 24675729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments.
    Möllney M; Wiechert W; Kownatzki D; de Graaf AA
    Biotechnol Bioeng; 1999; 66(2):86-103. PubMed ID: 10567067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches.
    Schmidt K; Marx A; de Graaf AA ; Wiechert W; Sahm H; Nielsen J; Villadsen J
    Biotechnol Bioeng; 1998 Apr; 58(2-3):254-7. PubMed ID: 10191397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic isotopomer labeling systems. Part II: structural flux identifiability analysis.
    Isermann N; Wiechert W
    Math Biosci; 2003 Jun; 183(2):175-214. PubMed ID: 12711410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of full 13C isotopomer distributions for metabolic flux analysis using heteronuclear spin echo difference NMR spectroscopy.
    de Graaf AA; Mahle M; Möllney M; Wiechert W; Stahmann P; Sahm H
    J Biotechnol; 2000 Jan; 77(1):25-35. PubMed ID: 10674212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic flux analysis in Escherichia coli by integrating isotopic dynamic and isotopic stationary 13C labeling data.
    Schaub J; Mauch K; Reuss M
    Biotechnol Bioeng; 2008 Apr; 99(5):1170-85. PubMed ID: 17972325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.