These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 8624133)

  • 41. Structural insights into Alzheimer filament assembly pathways based on site-directed mutagenesis and S-glutathionylation of three-repeat neuronal Tau protein.
    Dinoto L; Deture MA; Purich DL
    Microsc Res Tech; 2005 Jul; 67(3-4):156-63. PubMed ID: 16104002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules.
    Sengupta A; Kabat J; Novak M; Wu Q; Grundke-Iqbal I; Iqbal K
    Arch Biochem Biophys; 1998 Sep; 357(2):299-309. PubMed ID: 9735171
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The conformations of filamentous and soluble tau associated with Alzheimer paired helical filaments.
    Goux WJ
    Biochemistry; 2002 Nov; 41(46):13798-806. PubMed ID: 12427043
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tau binds to lipid membrane surfaces via short amphipathic helices located in its microtubule-binding repeats.
    Georgieva ER; Xiao S; Borbat PP; Freed JH; Eliezer D
    Biophys J; 2014 Sep; 107(6):1441-52. PubMed ID: 25229151
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RNA stimulates aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments.
    Kampers T; Friedhoff P; Biernat J; Mandelkow EM; Mandelkow E
    FEBS Lett; 1996 Dec; 399(3):344-9. PubMed ID: 8985176
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Residual structure in the repeat domain of tau: echoes of microtubule binding and paired helical filament formation.
    Eliezer D; Barré P; Kobaslija M; Chan D; Li X; Heend L
    Biochemistry; 2005 Jan; 44(3):1026-36. PubMed ID: 15654759
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2.
    Schwalbe M; Biernat J; Bibow S; Ozenne V; Jensen MR; Kadavath H; Blackledge M; Mandelkow E; Zweckstetter M
    Biochemistry; 2013 Dec; 52(50):9068-79. PubMed ID: 24251416
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorylation sensitizes microtubule-associated protein tau to Al(3+)-induced aggregation.
    Li W; Ma KK; Sun W; Paudel HK
    Neurochem Res; 1998 Dec; 23(12):1467-76. PubMed ID: 9821149
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conversion of serine to aspartate imitates phosphorylation-induced changes in the structure and function of microtubule-associated protein tau.
    Léger J; Kempf M; Lee G; Brandt R
    J Biol Chem; 1997 Mar; 272(13):8441-6. PubMed ID: 9079670
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Interaction of tau with the neural membrane cortex is regulated by phosphorylation at sites that are modified in paired helical filaments.
    Maas T; Eidenmüller J; Brandt R
    J Biol Chem; 2000 May; 275(21):15733-40. PubMed ID: 10747907
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phosphorylation of the overlooked tyrosine 310 regulates the structure, aggregation, and microtubule- and lipid-binding properties of Tau.
    Ait-Bouziad N; Chiki A; Limorenko G; Xiao S; Eliezer D; Lashuel HA
    J Biol Chem; 2020 Jun; 295(23):7905-7922. PubMed ID: 32341125
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modification of tau to an Alzheimer's type protein interferes with its interaction with microtubules.
    González C; Farías G; Maccioni RB
    Cell Mol Biol (Noisy-le-grand); 1998 Nov; 44(7):1117-27. PubMed ID: 9846894
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Functional interactions between the proline-rich and repeat regions of tau enhance microtubule binding and assembly.
    Goode BL; Denis PE; Panda D; Radeke MJ; Miller HP; Wilson L; Feinstein SC
    Mol Biol Cell; 1997 Feb; 8(2):353-65. PubMed ID: 9190213
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles.
    Prezel E; Elie A; Delaroche J; Stoppin-Mellet V; Bosc C; Serre L; Fourest-Lieuvin A; Andrieux A; Vantard M; Arnal I
    Mol Biol Cell; 2018 Jan; 29(2):154-165. PubMed ID: 29167379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Unique Alzheimer's disease paired helical filament specific epitopes involve double phosphorylation at specific sites.
    Hoffmann R; Lee VM; Leight S; Varga I; Otvos L
    Biochemistry; 1997 Jul; 36(26):8114-24. PubMed ID: 9201960
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential phosphorylation of human tau isoforms containing three repeats by several protein kinases.
    Singh TJ; Grundke-Iqbal I; Iqbal K
    Arch Biochem Biophys; 1996 Apr; 328(1):43-50. PubMed ID: 8638936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. ptl-1, a Caenorhabditis elegans gene whose products are homologous to the tau microtubule-associated proteins.
    McDermott JB; Aamodt S; Aamodt E
    Biochemistry; 1996 Jul; 35(29):9415-23. PubMed ID: 8755720
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils.
    Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T
    Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tau protein and the neurofibrillary pathology of Alzheimer's disease.
    Goedert M
    Ann N Y Acad Sci; 1996 Jan; 777():121-31. PubMed ID: 8624074
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phosphorylation of tau protein in tau-transfected 3T3 cells.
    Sygowski LA; Fieles AW; Lo MM; Scott CW; Caputo CB
    Brain Res Mol Brain Res; 1993 Nov; 20(3):221-8. PubMed ID: 8302160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.