These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Engineering smooth muscle tissue with a predefined structure. Kim BS; Mooney DJ J Biomed Mater Res; 1998 Aug; 41(2):322-32. PubMed ID: 9638538 [TBL] [Abstract][Full Text] [Related]
3. Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features. Miller DC; Thapa A; Haberstroh KM; Webster TJ Biomaterials; 2004 Jan; 25(1):53-61. PubMed ID: 14580908 [TBL] [Abstract][Full Text] [Related]
4. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528 [TBL] [Abstract][Full Text] [Related]
5. Design and fabrication of biodegradable polymer devices to engineer tubular tissues. Mooney DJ; Organ G; Vacanti JP; Langer R Cell Transplant; 1994; 3(2):203-10. PubMed ID: 7516806 [TBL] [Abstract][Full Text] [Related]
6. Improved biocompatibility of poly(lactic-co-glycolic acid) orv and poly-L-lactic acid blended with nanoparticulate amorphous calcium phosphate in vascular stent applications. Zheng X; Wang Y; Lan Z; Lyu Y; Feng G; Zhang Y; Tagusari S; Kislauskis E; Robich MP; McCarthy S; Sellke FW; Laham R; Jiang X; Gu WW; Wu T J Biomed Nanotechnol; 2014 Jun; 10(6):900-10. PubMed ID: 24749387 [TBL] [Abstract][Full Text] [Related]
7. Enhanced growth of animal and human endothelial cells on biodegradable polymers. Chu CF; Lu A; Liszkowski M; Sipehia R Biochim Biophys Acta; 1999 Nov; 1472(3):479-85. PubMed ID: 10564762 [TBL] [Abstract][Full Text] [Related]
8. In vivo characterisation of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. Day RM; Boccaccini AR; Maquet V; Shurey S; Forbes A; Gabe SM; Jérôme R J Mater Sci Mater Med; 2004 Jun; 15(6):729-34. PubMed ID: 15346742 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of PLA/GA polymers: increasing complexity. Vert M; Mauduit J; Li S Biomaterials; 1994 Dec; 15(15):1209-13. PubMed ID: 7703316 [TBL] [Abstract][Full Text] [Related]
10. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Mikos AG; Lyman MD; Freed LE; Langer R Biomaterials; 1994 Jan; 15(1):55-8. PubMed ID: 8161659 [TBL] [Abstract][Full Text] [Related]
11. Decreased fibroblast cell density on chemically degraded poly-lactic-co-glycolic acid, polyurethane, and polycaprolactone. Vance RJ; Miller DC; Thapa A; Haberstroh KM; Webster TJ Biomaterials; 2004 May; 25(11):2095-103. PubMed ID: 14741624 [TBL] [Abstract][Full Text] [Related]
12. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. Sittinger M; Reitzel D; Dauner M; Hierlemann H; Hammer C; Kastenbauer E; Planck H; Burmester GR; Bujia J J Biomed Mater Res; 1996; 33(2):57-63. PubMed ID: 8736023 [TBL] [Abstract][Full Text] [Related]
13. Preparation of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams by use of ice microparticulates. Chen G; Ushida T; Tateishi T Biomaterials; 2001 Sep; 22(18):2563-7. PubMed ID: 11516089 [TBL] [Abstract][Full Text] [Related]
14. Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Puelacher WC; Mooney D; Langer R; Upton J; Vacanti JP; Vacanti CA Biomaterials; 1994 Aug; 15(10):774-8. PubMed ID: 7986941 [TBL] [Abstract][Full Text] [Related]
15. Establishment of novel meniscal scaffold structures using polyglycolic and poly-l-lactic acids. Murakami T; Otsuki S; Nakagawa K; Okamoto Y; Inoue T; Sakamoto Y; Sato H; Neo M J Biomater Appl; 2017 Aug; 32(2):150-161. PubMed ID: 28610487 [TBL] [Abstract][Full Text] [Related]
16. Enhanced functions of vascular and bladder cells on poly-lactic-co-glycolic acid polymers with nanostructured surfaces. Miller DC; Thapa A; Haberstroh KM; Webster TJ IEEE Trans Nanobioscience; 2002 Jun; 1(2):61-6. PubMed ID: 16689208 [TBL] [Abstract][Full Text] [Related]
17. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies. Lu HH; Cooper JA; Manuel S; Freeman JW; Attawia MA; Ko FK; Laurencin CT Biomaterials; 2005 Aug; 26(23):4805-16. PubMed ID: 15763260 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Lu L; Peter SJ; Lyman MD; Lai HL; Leite SM; Tamada JA; Uyama S; Vacanti JP; Langer R; Mikos AG Biomaterials; 2000 Sep; 21(18):1837-45. PubMed ID: 10919687 [TBL] [Abstract][Full Text] [Related]
19. Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Mikos AG; Bao Y; Cima LG; Ingber DE; Vacanti JP; Langer R J Biomed Mater Res; 1993 Feb; 27(2):183-9. PubMed ID: 8382203 [TBL] [Abstract][Full Text] [Related]