These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 8624399)

  • 1. Bone remodelling adjacent to intramedullary stems: an optimal structures approach.
    Harrigan TP; Hamilton JJ; Reuben JD; Toni A; Viceconti M
    Biomaterials; 1996 Jan; 17(2):223-32. PubMed ID: 8624399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An analytical and numerical study of the stability of bone remodelling theories: dependence on microstructural stimulus.
    Harrigan TP; Hamilton JJ
    J Biomech; 1992 May; 25(5):477-88. PubMed ID: 1592853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analytical approach to investigate the evolution of bone volume fraction in bone remodeling simulation at the tissue and cell level.
    Colloca M; Ito K; van Rietbergen B
    J Biomech Eng; 2014 Mar; 136(3):031004. PubMed ID: 24337166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analogy of strain energy density based bone-remodeling algorithm and structural topology optimization.
    Jang IG; Kim IY; Kwak BB
    J Biomech Eng; 2009 Jan; 131(1):011012. PubMed ID: 19045928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orthotropic bone remodelling around uncemented femoral implant: a comparison with isotropic formulation.
    Mathai B; Dhara S; Gupta S
    Biomech Model Mechanobiol; 2021 Jun; 20(3):1115-1134. PubMed ID: 33768358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of strain-adaptive bone remodelling in the ankle joint.
    Bouguecha A; Weigel N; Behrens BA; Stukenborg-Colsman C; Waizy H
    Biomed Eng Online; 2011 Jul; 10():58. PubMed ID: 21729264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bone remodelling around the tibia due to total ankle replacement: effects of implant material and implant-bone interfacial conditions.
    Mondal S; Ghosh R
    Comput Methods Biomech Biomed Engin; 2019 Dec; 22(16):1247-1257. PubMed ID: 31497997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human cortical bone: Computer method for physical behavior at nano scale constant pressure assumption.
    Racila M; Crolet JM
    Technol Health Care; 2006; 14(4-5):379-92. PubMed ID: 17065759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating localised cellular inflammation and substrate properties in a strain energy density based bone remodelling algorithm for use in modelling trauma.
    Rosenberg N; Bull AMJ
    Comput Methods Biomech Biomed Engin; 2018 Feb; 21(3):208-218. PubMed ID: 29451004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the Use of Bone Remodelling Models to Estimate the Density Distribution of Bones. Uniqueness of the Solution.
    Martínez-Reina J; Ojeda J; Mayo J
    PLoS One; 2016; 11(2):e0148603. PubMed ID: 26859888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of an extra-articular implant on bone remodelling of the knee joint.
    Saeidi M; Gubaua JE; Kelly P; Kazemi M; Besier T; Dicati GWO; Pereira JT; Neitzert T; Ramezani M
    Biomech Model Mechanobiol; 2020 Feb; 19(1):37-46. PubMed ID: 31300999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of bone remodelling models with respect to computerised tomography-based finite element models of bone.
    Pérez MA; Fornells P; Doblaré M; García-Aznar JM
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):71-80. PubMed ID: 19697182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An enhanced version of a bone-remodelling model based on the continuum damage mechanics theory.
    Mengoni M; Ponthot JP
    Comput Methods Biomech Biomed Engin; 2015; 18(12):1367-76. PubMed ID: 24697274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of load-induced bone structural remodelling using stress-limit criterion.
    Marzban A; Nayeb-Hashemi H; Vaziri A
    Comput Methods Biomech Biomed Engin; 2015; 18(3):259-68. PubMed ID: 23697838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of orthotropic microstructure remodelling of cancellous bone.
    Kowalczyk P
    J Biomech; 2010 Feb; 43(3):563-9. PubMed ID: 19879580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of bone adaptation using damage accumulation.
    Prendergast PJ; Taylor D
    J Biomech; 1994 Aug; 27(8):1067-76. PubMed ID: 8089161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical evaluation of bone remodelling and adaptation considering different hip prosthesis designs.
    Levadnyi I; Awrejcewicz J; Gubaua JE; Pereira JT
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():122-129. PubMed ID: 29100185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational simulation of internal bone remodelling around dental implants: a sensitivity analysis.
    Hasan I; Rahimi A; Keilig L; Brinkmann KT; Bourauel C
    Comput Methods Biomech Biomed Engin; 2012; 15(8):807-14. PubMed ID: 21442491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bone to implant contact percentage on bone remodelling surrounding a dental implant.
    Lian Z; Guan H; Ivanovski S; Loo YC; Johnson NW; Zhang H
    Int J Oral Maxillofac Surg; 2010 Jul; 39(7):690-8. PubMed ID: 20418064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.