These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8624492)

  • 1. Buffering and activity coefficient of intracellular free magnesium concentration in human erythrocytes.
    Günther T; Vormann J; McGuigan JA
    Biochem Mol Biol Int; 1995 Nov; 37(5):871-5. PubMed ID: 8624492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Further studies on alterations in magnesium binding during cold storage of erythrocytes.
    Bock JL; Yusuf Y
    Biochim Biophys Acta; 1988 Jun; 941(2):225-31. PubMed ID: 3132976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total and free Mg2+ contents in erythrocytes: a simple but still undisclosed cell model.
    Günther T
    Magnes Res; 2007 Sep; 20(3):161-7. PubMed ID: 17972458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the noninvasive measurement of intracellular free magnesium by 31P NMR spectroscopy.
    Gupta RK; Gupta P; Yushok WD; Rose ZB
    Physiol Chem Phys Med NMR; 1983; 15(3):265-80. PubMed ID: 6425872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional compartmentation of intracellular magnesium.
    Günther T
    Magnesium; 1986; 5(2):53-9. PubMed ID: 3086631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Refinement and evaluation of a model of Mg2+ buffering in human red cells.
    Raftos JE; Lew VL; Flatman PW
    Eur J Biochem; 1999 Aug; 263(3):635-45. PubMed ID: 10469126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mg-ATP binding: its modification by spermine, the relevance to cytosolic Mg2+ buffering, changes in the intracellular ionized Mg2+ concentration and the estimation of Mg2+ by 31P-NMR.
    Lüthi D; Günzel D; McGuigan JA
    Exp Physiol; 1999 Mar; 84(2):231-52. PubMed ID: 10226168
    [No Abstract]   [Full Text] [Related]  

  • 8. Perinatal cellular ion metabolism: 31P-nuclear magnetic resonance spectroscopic analysis of intracellular free magnesium and pH in maternal and cord blood erythrocytes.
    Bardicef M; Bardicef O; Sorokin Y; Altura BM; Altura BT; Resnick LM
    J Soc Gynecol Investig; 1996; 3(2):66-70. PubMed ID: 8796810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competition between Li+ and Mg2+ for ATP in human erythrocytes. A 31P NMR and optical spectroscopy study.
    Ramasamy R; de Freitas DM
    FEBS Lett; 1989 Feb; 244(1):223-6. PubMed ID: 2924906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical review of the methods used to measure the apparent dissociation constant and ligand purity in Ca2+ and Mg2+ buffer solutions.
    McGuigan JA; Kay JW; Elder HY
    Prog Biophys Mol Biol; 2006 Nov; 92(3):333-70. PubMed ID: 16887174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between total magnesium concentration and free intracellular magnesium in sheep red blood cells.
    Fujise H; Cruz P; Reo NV; Lauf PK
    Biochim Biophys Acta; 1991 Aug; 1094(1):51-4. PubMed ID: 1883853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Determination of the concentration of free magnesium ions in hemolysates of oxygenated and deoxygenated packed human erythrocytes].
    Achilles W; Klinger R; Scheidt B; Frunder H
    Acta Biol Med Ger; 1978; 37(8):1161-6. PubMed ID: 749452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 31P NMR studies on rejuvenation of outdated red blood cells: complete regeneration of ATP is accompanied by partial Mg-ATP recomplexation.
    van Waarde A; Lombarts A; van den Thillart G; Erkelens C; Lugtenburg J
    Haematologia (Budap); 1989; 22(2):79-87. PubMed ID: 2744640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The regulatory role for magnesium in glycolytic flux of the human erythrocyte.
    Laughlin MR; Thompson D
    J Biol Chem; 1996 Nov; 271(46):28977-83. PubMed ID: 8910548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.
    Flatman PW; Lew VL
    J Physiol; 1980 Aug; 305():13-30. PubMed ID: 6777486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnesium release from red blood cells of hypertensive man by the ionophore A 23187.
    Wehling M; Theisen K
    Magnesium; 1988; 7(1):44-8. PubMed ID: 3132578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of red blood cell intracellular free magnesium by nuclear magnetic resonance as an assessment of magnesium depletion.
    Rude RK; Stephen A; Nadler J
    Magnes Trace Elem; 1991-1992; 10(2-4):117-21. PubMed ID: 1844544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo assessment of free magnesium concentration in human brain by 31P MRS. A new calibration curve based on a mathematical algorithm.
    Iotti S; Frassineti C; Alderighi L; Sabatini A; Vacca A; Barbiroli B
    NMR Biomed; 1996 Feb; 9(1):24-32. PubMed ID: 8842030
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between total and free magnesium levels in human red blood cells. Influence of HLA antigens.
    Santarromana M; Delepierre M; Féray JC; Franck G; Garay R; Henrotte JG
    Magnes Res; 1989 Dec; 2(4):281-3. PubMed ID: 2642072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model of the pH-dependence of the concentrations of complexes involving metabolites, haemoglobin and magnesium ions in the human erythrocyte.
    Mulquiney PJ; Kuchel PW
    Eur J Biochem; 1997 Apr; 245(1):71-83. PubMed ID: 9128726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.