BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 8624659)

  • 1. A histopathological comparison of "char-free" carbon dioxide lasers.
    Kauvar AN; Waldorf HA; Geronemus RG
    Dermatol Surg; 1996 Apr; 22(4):343-8. PubMed ID: 8624659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skin graft take and healing following 193-nm excimer, continuous-wave carbon dioxide (CO2), pulsed CO2, or pulsed holmium: YAG laser ablation of the graft bed.
    Green HA; Burd EE; Nishioka NS; Compton CC
    Arch Dermatol; 1993 Aug; 129(8):979-88. PubMed ID: 8352622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin resurfacing of facial rhytides and scars with the 90-microsecond short pulse CO2 laser. Comparison to the 900-microsecond dwell time CO2 lasers and clinical experience.
    Moy RL; Bucalo B; Lee MH; Wieder J; Chalet MD; Ostad A; Dishell WD
    Dermatol Surg; 1998 Dec; 24(12):1390-6. PubMed ID: 9865210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide laser-assisted hair transplantation. The effect of laser parameters on scalp tissue--a histologic study.
    Smithdeal CD
    Dermatol Surg; 1997 Sep; 23(9):835-40. PubMed ID: 9311379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction in lateral thermal damage using heat-conducting templates: a comparison of continuous wave and pulsed CO2 lasers.
    Spector N; Spector J; Ellis DL; Reinisch L
    Lasers Surg Med; 2003; 32(2):94-100. PubMed ID: 12561041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of periorbital wrinkles. A comparison of the SilkTouch carbon dioxide laser with a medium-depth chemical peel.
    Reed JT; Joseph AK; Bridenstine JB
    Dermatol Surg; 1997 Aug; 23(8):643-8. PubMed ID: 9256910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of CO2 laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing.
    Ross EV; Domankevitz Y; Skrobal M; Anderson RR
    Lasers Surg Med; 1996; 19(2):123-9. PubMed ID: 8887913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth of tissue ablation and residual thermal damage caused by a pixilated 2,940 nm laser in a swine skin model.
    Regan TD; Uebelhoer NS; Satter E; Ross EV
    Lasers Surg Med; 2010 Jul; 42(5):408-11. PubMed ID: 20583246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted surgical techniques using the Vanderbilt Free Electron Laser.
    Reinisch L; Mendenhall M; Charous S; Ossoff RH
    Laryngoscope; 1994 Nov; 104(11 Pt 1):1323-9. PubMed ID: 7968160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of thermal tissue effects induced by contact application of fiber guided laser systems.
    Janda P; Sroka R; Mundweil B; Betz CS; Baumgartner R; Leunig A
    Lasers Surg Med; 2003; 33(2):93-101. PubMed ID: 12913880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanned continuous wave CO2 laser resurfacing: a closer look at the different scanning modes.
    Huilgol SC; Poon E; Calonje E; Seed PT; Huilgol RR; Markey AC; Barlow RJ
    Dermatol Surg; 2001 May; 27(5):467-70. PubMed ID: 11359496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of CO2 laser pulse repetition rate on tissue ablation rate and thermal damage.
    Venugopalan V; Nishioka NS; Mikić BB
    IEEE Trans Biomed Eng; 1991 Oct; 38(10):1049-52. PubMed ID: 1761294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ablative laser resurfacing: high-energy pulsed carbon dioxide and erbium:yttrium-aluminum-garnet.
    Riggs K; Keller M; Humphreys TR
    Clin Dermatol; 2007; 25(5):462-73. PubMed ID: 17870524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Residual thermal damage resulting from pulsed and scanned resurfacing lasers.
    Bernstein EF; Brown DB; Kenkel J; Burns AJ
    Dermatol Surg; 1999 Oct; 25(10):739-44. PubMed ID: 10594573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation of histological findings of single session Er:YAG skin fractional resurfacing with various passes and energies and the possible clinical implications.
    Trelles MA; Vélez M; Mordon S
    Lasers Surg Med; 2008 Mar; 40(3):171-7. PubMed ID: 18366083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal interaction of short-pulsed laser focused beams with skin tissues.
    Jiao J; Guo Z
    Phys Med Biol; 2009 Jul; 54(13):4225-41. PubMed ID: 19531849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling thermal damage of incisions using diamond, copper, and sapphire heat-conducting templates with and without cooling.
    Ellis DL; Kozub J; Reinisch L
    Lasers Surg Med; 2006 Oct; 38(9):814-23. PubMed ID: 16998914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lasers in skin resurfacing.
    Dover JS; Hruza GJ; Arndt KA
    Semin Cutan Med Surg; 2000 Dec; 19(4):207-20. PubMed ID: 11149602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of excimer laser (308 nm) ablation of the human lens nucleus in air and saline with a fiber optic delivery system.
    Martinez M; Maguen E; Bardenstein D; Duffy M; Yoser S; Papaioannou T; Grundfest W
    Refract Corneal Surg; 1992; 8(5):368-74. PubMed ID: 1450118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A clinical and histologic comparison of electrosurgical and carbon dioxide laser peels.
    Acland KM; Calonje E; Seed PT; Stat C; Barlow RJ
    J Am Acad Dermatol; 2001 Mar; 44(3):492-6. PubMed ID: 11209120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.