These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 8624689)

  • 1. Interjoint coordination during pointing movements is disrupted in spastic hemiparesis.
    Levin MF
    Brain; 1996 Feb; 119 ( Pt 1)():281-93. PubMed ID: 8624689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interjoint coordination dynamics during reaching in stroke.
    Cirstea MC; Mitnitski AB; Feldman AG; Levin MF
    Exp Brain Res; 2003 Aug; 151(3):289-300. PubMed ID: 12819841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compensatory strategies for reaching in stroke.
    Cirstea MC; Levin MF
    Brain; 2000 May; 123 ( Pt 5)():940-53. PubMed ID: 10775539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment and sequencing of different degrees of freedom during pointing movements involving the trunk in healthy and hemiparetic subjects.
    Archambault P; Pigeon P; Feldman AG; Levin MF
    Exp Brain Res; 1999 May; 126(1):55-67. PubMed ID: 10333007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arm-trunk coordination for beyond-the-reach movements in adults with stroke.
    Shaikh T; Goussev V; Feldman AG; Levin MF
    Neurorehabil Neural Repair; 2014 May; 28(4):355-66. PubMed ID: 24270057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arm reaching improvements with short-term practice depend on the severity of the motor deficit in stroke.
    Cirstea MC; Ptito A; Levin MF
    Exp Brain Res; 2003 Oct; 152(4):476-88. PubMed ID: 12928760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of multi-joint arm movements in cerebellar ataxia: analysis of hand and angular kinematics.
    Topka H; Konczak J; Dichgans J
    Exp Brain Res; 1998 Apr; 119(4):483-92. PubMed ID: 9588783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemispheric specialization in the co-ordination of arm and trunk movements during pointing in patients with unilateral brain damage.
    Esparza DY; Archambault PS; Winstein CJ; Levin MF
    Exp Brain Res; 2003 Feb; 148(4):488-97. PubMed ID: 12582832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do strength, sensation, spasticity and joint individuation relate to the reaching deficits of people with chronic hemiparesis?
    Zackowski KM; Dromerick AW; Sahrmann SA; Thach WT; Bastian AJ
    Brain; 2004 May; 127(Pt 5):1035-46. PubMed ID: 14976070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A detailed analysis of the planning and execution of prehension movements by three adolescents with spastic hemiparesis due to cerebral palsy.
    Mutsaarts M; Steenbergen B; Meulenbroek R
    Exp Brain Res; 2004 Jun; 156(3):293-304. PubMed ID: 14762638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between stretch reflex thresholds and voluntary arm muscle activation in patients with spasticity.
    Musampa NK; Mathieu PA; Levin MF
    Exp Brain Res; 2007 Aug; 181(4):579-93. PubMed ID: 17476486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject.
    Messier J; Adamovich S; Berkinblit M; Tunik E; Poizner H
    Exp Brain Res; 2003 Jun; 150(4):399-416. PubMed ID: 12739083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated turn-and-reach movements. II. Planning in an external frame of reference.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):290-303. PubMed ID: 12522180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of trunk restraint on the recovery of reaching movements in hemiparetic patients.
    Michaelsen SM; Luta A; Roby-Brami A; Levin MF
    Stroke; 2001 Aug; 32(8):1875-83. PubMed ID: 11486120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinematics of pointing movements made in a virtual versus a physical 3-dimensional environment in healthy and stroke subjects.
    Knaut LA; Subramanian SK; McFadyen BJ; Bourbonnais D; Levin MF
    Arch Phys Med Rehabil; 2009 May; 90(5):793-802. PubMed ID: 19406299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superposition of independent units of coordination during pointing movements involving the trunk with and without visual feedback.
    Pigeon P; Yahia LH; Mitnitski AB; Feldman AG
    Exp Brain Res; 2000 Apr; 131(3):336-49. PubMed ID: 10789948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand trajectory invariance in reaching movements involving the trunk.
    Adamovich SV; Archambault PS; Ghafouri M; Levin MF; Poizner H; Feldman AG
    Exp Brain Res; 2001 Jun; 138(3):288-303. PubMed ID: 11460767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reach-to-grasp interjoint coordination for moving object in children with hemiplegia.
    Petrarca M; Zanelli G; Patanè F; Frascarelli F; Cappa P; Castelli E
    J Rehabil Med; 2009 Nov; 41(12):995-100. PubMed ID: 19841831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Faster Reaching in Chronic Spastic Stroke Patients Comes at the Expense of Arm-Trunk Coordination.
    Mandon L; Boudarham J; Robertson J; Bensmail D; Roche N; Roby-Brami A
    Neurorehabil Neural Repair; 2016 Mar; 30(3):209-20. PubMed ID: 26089311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.