These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 8624715)

  • 1. Optical recording from cerebellar Purkinje cells using intracellularly injected voltage-sensitive dyes.
    Kogan A; Ross WN; Zecevic D; Lasser-Ross N
    Brain Res; 1995 Nov; 700(1-2):235-9. PubMed ID: 8624715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons.
    Miyakawa H; Lev-Ram V; Lasser-Ross N; Ross WN
    J Neurophysiol; 1992 Oct; 68(4):1178-89. PubMed ID: 1359027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial distribution of synaptically activated sodium concentration changes in cerebellar Purkinje neurons.
    Callaway JC; Ross WN
    J Neurophysiol; 1997 Jan; 77(1):145-52. PubMed ID: 9120555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial distribution of Ca2+ influx in turtle Purkinje cell dendrites in vitro: role of a transient outward current.
    Midtgaard J; Lasser-Ross N; Ross WN
    J Neurophysiol; 1993 Dec; 70(6):2455-69. PubMed ID: 8120593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular long-wavelength voltage-sensitive dyes for studying the dynamics of action potentials in axons and thin dendrites.
    Zhou WL; Yan P; Wuskell JP; Loew LM; Antic SD
    J Neurosci Methods; 2007 Aug; 164(2):225-39. PubMed ID: 17560661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative effects of methylmercury on parallel-fiber and climbing-fiber responses of rat cerebellar slices.
    Yuan Y; Atchison WD
    J Pharmacol Exp Ther; 1999 Mar; 288(3):1015-25. PubMed ID: 10027838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast optical measurement of membrane potential changes at multiple sites on an individual nerve cell.
    Zecević D; Antić S
    Histochem J; 1998 Mar; 30(3):197-216. PubMed ID: 10188927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression.
    Sakurai M
    Proc Natl Acad Sci U S A; 1990 May; 87(9):3383-5. PubMed ID: 2159149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic shunting by a baseline of synaptic conductances modulates responses to inhibitory input volleys in cerebellar Purkinje cells.
    Kreiner L; Jaeger D
    Cerebellum; 2004; 3(2):112-25. PubMed ID: 15233579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-dependence of climbing fiber-driven calcium transients in Purkinje cells.
    Rokni D; Yarom Y
    Neuroscience; 2009 Sep; 162(3):694-701. PubMed ID: 19185601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells.
    Staub C; De Schutter E; Knöpfel T
    J Comput Neurosci; 1994 Dec; 1(4):301-11. PubMed ID: 8792236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climbing and parallel fiber responses recorded intracellularly from Purkinje cell dendrites in guinea pig cerebellar slices.
    Kimura H; Okamoto K; Sakai Y
    Brain Res; 1985 Dec; 348(2):213-9. PubMed ID: 2866810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal transmission in the parallel fiber-Purkinje cell system visualized by high-resolution imaging.
    Vranesic I; Iijima T; Ichikawa M; Matsumoto G; Knöpfel T
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):13014-7. PubMed ID: 7809165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of glutamatergic transmission by bergmann glial cells in rat cerebellum in situ.
    Bordey A; Sontheimer H
    J Neurophysiol; 2003 Feb; 89(2):979-88. PubMed ID: 12574474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures.
    Larkum ME; Rioult MG; Lüscher HR
    J Neurophysiol; 1996 Jan; 75(1):154-70. PubMed ID: 8822549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biplanar slice preparation for studying cerebellar synaptic transmission.
    Garthwaite J; Batchelor AM
    J Neurosci Methods; 1996 Feb; 64(2):189-97. PubMed ID: 8699880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging voltage and synaptically activated sodium transients in cerebellar Purkinje cells.
    Lasser-Ross N; Ross WN
    Proc Biol Sci; 1992 Jan; 247(1318):35-9. PubMed ID: 1348119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State-dependent modification of complex spike waveforms in the cerebellar cortex.
    Tal Z; Chorev E; Yarom Y
    Cerebellum; 2008; 7(4):577-82. PubMed ID: 18931886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodium action potentials in the dendrites of cerebellar Purkinje cells.
    Regehr WG; Konnerth A; Armstrong CM
    Proc Natl Acad Sci U S A; 1992 Jun; 89(12):5492-6. PubMed ID: 1608959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.