BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 8625253)

  • 1. More detailed characterization of some of the HL60 karyotypic features by fluorescence in situ hybridization.
    Volpi EV; Vatcheva R; Labella T; Gan SU
    Cancer Genet Cytogenet; 1996 Apr; 87(2):103-6. PubMed ID: 8625253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of genetic material is more common than gain in acute myeloid leukemia with complex aberrant karyotype: a detailed analysis of 125 cases using conventional chromosome analysis and fluorescence in situ hybridization including 24-color FISH.
    Schoch C; Haferlach T; Bursch S; Gerstner D; Schnittger S; Dugas M; Kern W; Löffler H; Hiddemann W
    Genes Chromosomes Cancer; 2002 Sep; 35(1):20-9. PubMed ID: 12203786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of two marker chromosomes in a patient with acute nonlymphocytic leukemia by two-color fluorescence in situ hybridization.
    Taniwaki M; Speicher MR; Lengauer C; Jauch A; Popp S; Cremer T
    Cancer Genet Cytogenet; 1993 Oct; 70(2):99-102. PubMed ID: 8242604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral karyotyping and fluorescence in situ hybridization detect novel chromosomal aberrations, a recurring involvement of chromosome 21 and amplification of the MYC oncogene in acute myeloid leukaemia M2.
    Hilgenfeld E; Padilla-Nash H; McNeil N; Knutsen T; Montagna C; Tchinda J; Horst J; Ludwig WD; Serve H; Büchner T; Berdel WE; Schröck E; Ried T
    Br J Haematol; 2001 May; 113(2):305-17. PubMed ID: 11380393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smad5, a tumor suppressor candidate at 5q31.1, is hemizygously lost and not mutated in the retained allele in human leukemia cell line HL60.
    Zavadil J; Brezinová J; Svoboda P; Zemanová Z; Michalová K
    Leukemia; 1997 Aug; 11(8):1187-92. PubMed ID: 9264367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytogenetics of the chronic myeloid leukemia-derived cell line K562: karyotype clarification by multicolor fluorescence in situ hybridization, comparative genomic hybridization, and locus-specific fluorescence in situ hybridization.
    Gribble SM; Roberts I; Grace C; Andrews KM; Green AR; Nacheva EP
    Cancer Genet Cytogenet; 2000 Apr; 118(1):1-8. PubMed ID: 10731582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic value of fluorescence in situ hybridization for the detection of genomic aberrations in older patients with acute myeloid leukemia.
    Fröhling S; Kayser S; Mayer C; Miller S; Wieland C; Skelin S; Schlenk RF; Döhner H; Döhner K;
    Haematologica; 2005 Feb; 90(2):194-9. PubMed ID: 15710571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of some marker chromosomes in acute leukemias by fluorescence in situ hybridization.
    Shi G; Weh HJ; Hossfeld DK
    Hematol Oncol; 1993; 11(2):81-7. PubMed ID: 8406378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of recurrent cytogenetic abnormalities in acute lymphoblastic and myeloid leukemias using fluorescence in situ hybridization.
    Vance GH
    Methods Mol Biol; 2013; 999():79-91. PubMed ID: 23666691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of chromosome changes in acute myeloid leukemia (AML-M2) by molecular cytogenetics.
    Starza RL; Matteucci C; Crescenzi B; Perla G; Carotenuto M; Martelli MF; Hagemeijer A; Mecucci C
    Cancer Genet Cytogenet; 1997 Jun; 95(2):148-52. PubMed ID: 9169032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel t(4;16)(q25;q23.1) associated with EGF and ELOVL6 deregulation in acute myeloid leukemia.
    Anelli L; Zagaria A; Coccaro N; Tota G; Impera L; Minervini CF; Pastore D; Minervini A; Casieri P; Specchia G; Albano F
    Gene; 2013 Oct; 529(1):144-7. PubMed ID: 23933272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microdissection and FISH investigations in acute myeloid leukemia: a step forward to full identification of complex karyotypic changes.
    Falzetti D; Vermeesch JR; Matteucci C; Ciolli S; Martelli MF; Marynen P; Mecucci C
    Cancer Genet Cytogenet; 2000 Apr; 118(1):28-34. PubMed ID: 10731587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytogenetic profile of de novo acute myeloid leukemia: a study based on 1432 patients in a single institution of China.
    Cheng Y; Wang Y; Wang H; Chen Z; Lou J; Xu H; Wang H; Qian W; Meng H; Lin M; Jin J
    Leukemia; 2009 Oct; 23(10):1801-6. PubMed ID: 19474801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectral karyotypic study of the HL-60 cell line: detection of complex rearrangements involving chromosomes 5, 7, and 16 and delineation of critical region of deletion on 5q31.1.
    Liang JC; Ning Y; Wang RY; Padilla-Nash HM; Schröck E; Soenksen D; Nagarajan L; Ried T
    Cancer Genet Cytogenet; 1999 Sep; 113(2):105-9. PubMed ID: 10484974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosome abnormalities in acute myeloid leukemia: a cytogenetic study in an Indonesian population.
    Sudoyo AW; Indahwati ; Djoerban Z; Abdulmuthalib ; Reksodiputro AH
    Gan To Kagaku Ryoho; 2000 May; 27 Suppl 2():482-90. PubMed ID: 10895199
    [No Abstract]   [Full Text] [Related]  

  • 16. High frequency of dicentric chromosomes detected by multi-centromeric FISH in patients with acute myeloid leukemia and complex karyotype.
    Sarova I; Brezinova J; Zemanova Z; Ransdorfova S; Svobodova K; Izakova S; Pavlistova L; Lizcova L; Berkova A; Skipalova K; Hodanova L; Salek C; Jonasova A; Michalova K
    Leuk Res; 2018 May; 68():85-89. PubMed ID: 29574397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Abnormalities of chromosome 17 in myeloid malignancies with complex chromosomal abnormalities].
    Zhu Y; Xu W; Liu Q; Pan J; Qiu H; Wang R; Qiao C; Jiang Y; Zhang S; Fan L; Zhang J; Shen Y; Xue Y; Li J
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2008 Oct; 25(5):579-82. PubMed ID: 18841577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Multiprobe fluorescence in situ hybridization panel in detection of the common cytogenetic abnormalities of acute myeloid leukemia].
    Xu LL; Liu XL; Du QF; Song LL; Cao R; Wei YQ; Xu N; Zhang JF
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2011 Mar; 27(3):324-6. PubMed ID: 21638933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An interstitial 11q23 deletion proven to be a rearrangement interrupting the MLL gene in an infant with acute myeloblastic leukemia.
    Leblanc T; Le Coniat M; Flexor M; Baruchel A; Daniel MT; Berger R
    Leukemia; 1996 Nov; 10(11):1844-6. PubMed ID: 8892693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment and characterization of a new human acute myelocytic leukemia cell line SH-2 with a loss of Y chromosome, a derivative chromosome 16 resulting from an unbalanced translocation between chromosomes 16 and 17, monosomy 17, trisomy 19, and p53 alteration.
    Qiu H; Xue Y; Zhang J; Pan J; Dai H; Wu Y; Wang Y; Chen S; Wu D
    Exp Hematol; 2008 Nov; 36(11):1487-95. PubMed ID: 18715689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.