These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 8625687)

  • 1. Evaluation of a new thin-walled endotracheal tube for use in children.
    Okhuysen RS; Bristow F; Burkhead S; Kolobow T; Lally KP
    Chest; 1996 May; 109(5):1335-8. PubMed ID: 8625687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced airway resistance and work of breathing during mechanical ventilation with an ultra-thin, two-stage polyurethane endotracheal tube (the Kolobow tube).
    Velarde CA; Short BL; Rivera O; Seale W; Howard R; Kolobow T
    Crit Care Med; 1997 Feb; 25(2):276-9. PubMed ID: 9034264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new ultrathin-walled, non-kinking, low-resistance endotracheal tube for neonatal use: preliminary studies of a new no-pressure cuff.
    Kolobow T; Rossi N; Tsuno K; Aprigliano M
    Biomed Instrum Technol; 1994; 28(2):123-9. PubMed ID: 8186805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Work of breathing for cuffed and uncuffed pediatric endotracheal tubes in an in vitro lung model setting.
    Thomas J; Weiss M; Cannizzaro V; Both CP; Schmidt AR
    Paediatr Anaesth; 2018 Sep; 28(9):780-787. PubMed ID: 30004614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and development of ultrathin-walled, nonkinking endotracheal tubes of a new "no-pressure" laryngeal seal design. A preliminary report.
    Kolobow T; Tsuno K; Rossi N; Aprigliano M
    Anesthesiology; 1994 Oct; 81(4):1061-7. PubMed ID: 7943817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of neonatal endotracheal tube size and airway resistance.
    Oca MJ; Becker MA; Dechert RE; Donn SM
    Respir Care; 2002 Sep; 47(9):994-7. PubMed ID: 12188933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressure support compensation for inspiratory work due to endotracheal tubes and demand continuous positive airway pressure.
    Fiastro JF; Habib MP; Quan SF
    Chest; 1988 Mar; 93(3):499-505. PubMed ID: 3277803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of endotracheal tube size and ventilator settings on the mechanics of a test system during intermittent flow ventilation.
    Farstad T; Bratlid D
    Pediatr Pulmonol; 1991; 11(1):15-21. PubMed ID: 1923663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An in vitro evaluation of the influence of neonatal endotracheal tube diameter and length on the work of breathing.
    Miyake F; Suga R; Akiyama T; Namba F
    Paediatr Anaesth; 2018 May; 28(5):458-462. PubMed ID: 29633434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gas flow between coaxial tubes: impedance to gas flow in an endotracheal tube increases with a catheter within.
    Magee PT
    Proc Inst Mech Eng H; 2012 Jun; 226(6):491-4. PubMed ID: 22783765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endotracheal tube resistance and inertance in a model of mechanical ventilation of newborns and small infants-the impact of ventilator settings on tracheal pressure swings.
    Hentschel R; Buntzel J; Guttmann J; Schumann S
    Physiol Meas; 2011 Sep; 32(9):1439-51. PubMed ID: 21799238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental study of double-lumen, two-stage endotracheal tube during conventional mechanical ventilation in rabbits.
    Chen XN; Wu JC; Geng R; Zhang XP
    Crit Care Med; 1997 Mar; 25(3):492-5. PubMed ID: 9118667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensating Artificial Airway Resistance via Active Expiration Assistance.
    Wirth S; Seywert L; Spaeth J; Schumann S
    Respir Care; 2016 Dec; 61(12):1597-1604. PubMed ID: 27555619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new endotracheal tube for infants--laboratory and clinical assessment: a preliminary study.
    Stankiewicz B; Darowski M; Glapiński J; Rawicz M; Michnikowski M; Guć M; Kuraszkiewicz B
    Paediatr Anaesth; 2013 May; 23(5):440-5. PubMed ID: 23445272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of a gas leak around the endotracheal tube on the mean tracheal pressure during mechanical ventilation.
    Pérez Fontán JJ; Heldt GP; Gregory GA
    Am Rev Respir Dis; 1985 Aug; 132(2):339-42. PubMed ID: 4026056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in resistances of endotracheal tubes with reductions in the cross-sectional area.
    El-Khatib MF; Husari A; Jamaleddine GW; Ayoub CM; Bou-Khalil P
    Eur J Anaesthesiol; 2008 Apr; 25(4):275-9. PubMed ID: 18177540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of inspiratory work of breathing between flow-triggered and pressure-triggered demand flow systems in rabbits.
    Nishimura M; Imanaka H; Yoshiya I; Kacmarek RM
    Crit Care Med; 1994 Jun; 22(6):1002-9. PubMed ID: 8205807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance of pediatric and neonatal endotracheal tubes: influence of flow rate, size, and shape.
    Manczur T; Greenough A; Nicholson GP; Rafferty GF
    Crit Care Med; 2000 May; 28(5):1595-8. PubMed ID: 10834718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model of single-sized endotracheal tube for adults.
    Calderon LG; Moreira MM; Barreto G; Tincani AJ
    Einstein (Sao Paulo); 2019; 18():eAO4805. PubMed ID: 31644676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance and inertia of endotracheal tubes used in infants during periodic flow.
    Pérez Fontán JJ; Heldt GP; Gregory GA
    Crit Care Med; 1985 Dec; 13(12):1052-5. PubMed ID: 4064716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.