These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 8625811)

  • 1. Unequal cleavage in leech embryos: zygotic transcription is required for correct spindle orientation in subset of early blastomeres.
    Bissen ST; Smith CM
    Development; 1996 Feb; 122(2):599-606. PubMed ID: 8625811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcription in leech: mRNA synthesis is required for early cleavages in Helobdella embryos.
    Bissen ST; Weisblat DA
    Dev Biol; 1991 Jul; 146(1):12-23. PubMed ID: 2060698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional control of unequal cleavage in early Tubifex embryos.
    Aoki M; Shimizu T
    Dev Genes Evol; 2017 Jul; 227(4):279-287. PubMed ID: 28624889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental transition to bilaterally symmetric cell divisions is regulated by Pax-mediated transcription in embryos of the leech Helobdella austinensis.
    Schmerer MW; Null RW; Shankland M
    Dev Biol; 2013 Oct; 382(1):149-59. PubMed ID: 23891819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell cycle duration at the time of maternal zygotic transition for in vitro produced bovine embryos: effect of oxygen tension and transcription inhibition.
    Lequarre AS; Marchandise J; Moreau B; Massip A; Donnay I
    Biol Reprod; 2003 Nov; 69(5):1707-13. PubMed ID: 12890737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental control of cell division in leech embryos.
    Bissen ST
    Bioessays; 1997 Mar; 19(3):201-7. PubMed ID: 9080769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation of the specification of unequal cleavages in leech embryos.
    Symes K; Weisblat DA
    Dev Biol; 1992 Mar; 150(1):203-18. PubMed ID: 1371479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell-cell association directed mitotic spindle orientation in the early development of the marine shrimp Sicyonia ingentis.
    Wang SW; Griffin FJ; Clark WH
    Development; 1997 Feb; 124(4):773-80. PubMed ID: 9043059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrifugation redistributes factors determining cleavage patterns in leech embryos.
    Astrow S; Holton B; Weisblat D
    Dev Biol; 1987 Mar; 120(1):270-83. PubMed ID: 3817294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric cell divisions in the early embryo of the leech Helobdella robusta.
    Weisblat DA
    Prog Mol Subcell Biol; 2007; 45():79-95. PubMed ID: 17585497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of the cell cycle control gene, cdc25, is constitutive in the segmental founder cells but is cell-cycle-regulated in the micromeres of leech embryos.
    Bissen ST
    Development; 1995 Sep; 121(9):3035-43. PubMed ID: 7555729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D quadrant specification in the leech Helobdella: actomyosin contractility controls the unequal cleavage of the CD blastomere.
    Lyons DC; Weisblat DA
    Dev Biol; 2009 Oct; 334(1):46-58. PubMed ID: 19607823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt-dependent spindle polarization in the early C. elegans embryo.
    Walston TD; Hardin J
    Semin Cell Dev Biol; 2006 Apr; 17(2):204-13. PubMed ID: 16765610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How can zygotes segregate entire parental genomes into distinct blastomeres? The zygote metaphase revisited.
    Destouni A; Vermeesch JR
    Bioessays; 2017 Apr; 39(4):. PubMed ID: 28247957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of the appearance of division asynchrony and microtubule-dependent chromosome cycles in Xenopus laevis embryos.
    Clute P; Masui Y
    Dev Biol; 1995 Oct; 171(2):273-85. PubMed ID: 7556912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cleavage program in the 2d cell lineage of Tubifex embryos.
    Yoshida N; Arai A; Aoki M; Moriya M; Sekiguchi K; Shimizu T
    J Morphol; 2019 Apr; 280(4):568-586. PubMed ID: 30762252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell-autonomous expression and position-dependent repression by Li+ of two zygotic genes during sea urchin early development.
    Ghiglione C; Lhomond G; Lepage T; Gache C
    EMBO J; 1993 Jan; 12(1):87-96. PubMed ID: 7679074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alteration of cell cycle timing and induction of surface instability in starfish blastomeres microinjected with antibodies to spectrin.
    Wong GK; Hoyle DH; Begg DA
    Dev Biol; 1996 Nov; 180(1):199-212. PubMed ID: 8948585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A default mechanism of spindle orientation based on cell shape is sufficient to generate cell fate diversity in polarised Xenopus blastomeres.
    Strauss B; Adams RJ; Papalopulu N
    Development; 2006 Oct; 133(19):3883-93. PubMed ID: 16943269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fates of the blastomeres of the 32-cell-stage Xenopus embryo.
    Moody SA
    Dev Biol; 1987 Aug; 122(2):300-19. PubMed ID: 3596014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.