These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 8626033)
1. When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae). Parichy DM Dev Biol; 1996 May; 175(2):283-300. PubMed ID: 8626033 [TBL] [Abstract][Full Text] [Related]
2. Pigment patterns of larval salamanders (Ambystomatidae, Salamandridae): the role of the lateral line sensory system and the evolution of pattern-forming mechanisms. Parichy DM Dev Biol; 1996 May; 175(2):265-82. PubMed ID: 8626032 [TBL] [Abstract][Full Text] [Related]
3. Homology and evolutionary novelty in the deployment of extracellular matrix molecules during pigment pattern formation in the salamanders Taricha torosa and T. rivularis (Salamandridae). Parichy DM J Exp Zool; 2001 Apr; 291(1):13-24. PubMed ID: 11335913 [TBL] [Abstract][Full Text] [Related]
4. The control of pigment cell pattern formation in the California newt, Taricha torosa. Tucker RP; Erickson CA J Embryol Exp Morphol; 1986 Sep; 97():141-68. PubMed ID: 3794598 [TBL] [Abstract][Full Text] [Related]
5. The development of the larval pigment patterns in Triturus alpestris and Ambystoma mexicanum. Epperlein HH; Löfberg J Adv Anat Embryol Cell Biol; 1990; 118():1-99. PubMed ID: 2368640 [TBL] [Abstract][Full Text] [Related]
6. Experimental analysis of character coupling across a complex life cycle: pigment pattern metamorphosis in the tiger salamander, Ambystoma tigrinum tigrinum. Parichy DM J Morphol; 1998 Jul; 237(1):53-67. PubMed ID: 9642792 [TBL] [Abstract][Full Text] [Related]
7. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation. Tucker RP; Erickson CA Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303 [TBL] [Abstract][Full Text] [Related]
8. Neural fold and neural crest movement in the Mexican salamander Ambystoma mexicanum. Brun RB J Exp Zool; 1985 Apr; 234(1):57-61. PubMed ID: 3989498 [TBL] [Abstract][Full Text] [Related]
9. Neural crest cell migration and pigment pattern formation in urodele amphibians. Epperlein HH; Löfberg J; Olsson L Int J Dev Biol; 1996 Feb; 40(1):229-38. PubMed ID: 8735933 [TBL] [Abstract][Full Text] [Related]
10. Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: differences in cell morphology, arrangement, and extracellular matrix as related to migration. Spieth J; Keller RE J Exp Zool; 1984 Jan; 229(1):91-107. PubMed ID: 6699590 [TBL] [Abstract][Full Text] [Related]
11. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes. Quigley IK; Turner JM; Nuckels RJ; Manuel JL; Budi EH; MacDonald EL; Parichy DM Development; 2004 Dec; 131(24):6053-69. PubMed ID: 15537688 [TBL] [Abstract][Full Text] [Related]
12. Melanophores in the stripes of adult zebrafish do not have the nature to gather, but disperse when they have the space to move. Takahashi G; Kondo S Pigment Cell Melanoma Res; 2008 Dec; 21(6):677-86. PubMed ID: 19067972 [TBL] [Abstract][Full Text] [Related]
13. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae. Macmillan GJ J Embryol Exp Morphol; 1976 Jun; 35(3):463-84. PubMed ID: 947992 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of pigment pattern formation in the zebrafish, Brachydanio rerio. III. Effect of anteroposterior location of three-day lateral line melanophores on colonization by the second wave of melanophores. Milos N; Dingle AD; Milos JP J Exp Zool; 1983 Jul; 227(1):81-92. PubMed ID: 6619768 [TBL] [Abstract][Full Text] [Related]
15. Pigment pattern formation by contact-dependent depolarization. Inaba M; Yamanaka H; Kondo S Science; 2012 Feb; 335(6069):677. PubMed ID: 22323812 [TBL] [Abstract][Full Text] [Related]
16. Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation. Budi EH; Patterson LB; Parichy DM Development; 2008 Aug; 135(15):2603-14. PubMed ID: 18508863 [TBL] [Abstract][Full Text] [Related]
17. Salamander pigment patterns: how can they be used to study developmental mechanisms and their evolutionary transformation? Parichy DM Int J Dev Biol; 1996 Aug; 40(4):871-84. PubMed ID: 8877461 [TBL] [Abstract][Full Text] [Related]
18. Immunohistochemical demonstration of hyaluronan and its possible involvement in axolotl neural crest cell migration. Epperlein HH; Radomski N; Wonka F; Walther P; Wilsch M; Müller M; Schwarz H J Struct Biol; 2000 Oct; 132(1):19-32. PubMed ID: 11121304 [TBL] [Abstract][Full Text] [Related]
19. The role of glycosaminoglycans in anuran pigment cell migration. Tucker RP J Embryol Exp Morphol; 1986 Mar; 92():145-64. PubMed ID: 3723060 [TBL] [Abstract][Full Text] [Related]
20. On the embryonic origin of adult melanophores: the role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish. Dooley CM; Mongera A; Walderich B; Nüsslein-Volhard C Development; 2013 Mar; 140(5):1003-13. PubMed ID: 23364329 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]