BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 8626284)

  • 1. Periplasmic copper-zinc superoxide dismutase of Legionella pneumophila: role in stationary-phase survival.
    St John G; Steinman HM
    J Bacteriol; 1996 Mar; 178(6):1578-84. PubMed ID: 8626284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The iron superoxide dismutase of Legionella pneumophila is essential for viability.
    Sadosky AB; Wilson JW; Steinman HM; Shuman HA
    J Bacteriol; 1994 Jun; 176(12):3790-9. PubMed ID: 8206858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Function and stationary-phase induction of periplasmic copper-zinc superoxide dismutase and catalase/peroxidase in Caulobacter crescentus.
    Schnell S; Steinman HM
    J Bacteriol; 1995 Oct; 177(20):5924-9. PubMed ID: 7592345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalase-peroxidases of Legionella pneumophila: cloning of the katA gene and studies of KatA function.
    Bandyopadhyay P; Steinman HM
    J Bacteriol; 2000 Dec; 182(23):6679-86. PubMed ID: 11073912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the iron superoxide dismutase gene of Azotobacter vinelandii: sodB may be essential for viability.
    Qurollo BA; Bishop PE; Hassan HM
    Can J Microbiol; 2001 Jan; 47(1):63-71. PubMed ID: 15049451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme.
    Steinman HM; Ely B
    J Bacteriol; 1990 Jun; 172(6):2901-10. PubMed ID: 2345128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Legionella pneumophila catalase-peroxidases: cloning of the katB gene and studies of KatB function.
    Bandyopadhyay P; Steinman HM
    J Bacteriol; 1998 Oct; 180(20):5369-74. PubMed ID: 9765568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages.
    Brand BC; Sadosky AB; Shuman HA
    Mol Microbiol; 1994 Nov; 14(4):797-808. PubMed ID: 7891565
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and nucleotide sequences of iron and copper-zinc superoxide dismutase genes of Legionella pneumophila and their distribution among Legionella species.
    Amemura-Maekawa J; Kura F; Watanabe H
    Jpn J Med Sci Biol; 1996 Aug; 49(4):167-86. PubMed ID: 9086394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase.
    Bachman MA; Swanson MS
    Mol Microbiol; 2001 Jun; 40(5):1201-14. PubMed ID: 11401723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila.
    Köhler R; Bubert A; Goebel W; Steinert M; Hacker J; Bubert B
    Mol Gen Genet; 2000 Jan; 262(6):1060-9. PubMed ID: 10660067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection.
    Robey M; O'Connell W; Cianciotto NP
    Infect Immun; 2001 Jul; 69(7):4276-86. PubMed ID: 11401964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the icmH and icmF genes required for Legionella pneumophila intracellular growth, genes that are present in many bacteria associated with eukaryotic cells.
    Zusman T; Feldman M; Halperin E; Segal G
    Infect Immun; 2004 Jun; 72(6):3398-409. PubMed ID: 15155646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation of the macrophage-induced gene (gspA) of Legionella pneumophila and phenotypic characterization of a null mutant.
    Abu Kwaik Y; Gao LY; Harb OS; Stone BJ
    Mol Microbiol; 1997 May; 24(3):629-42. PubMed ID: 9179855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced expression of the Legionella pneumophila gene encoding a 20-kilodalton protein during intracellular infection.
    Abu Kwaik Y
    Infect Immun; 1998 Jan; 66(1):203-12. PubMed ID: 9423859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes.
    Mou Q; Leung PHM
    Virulence; 2018 Jan; 9(1):185-196. PubMed ID: 28873330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role for the Ankyrin eukaryotic-like genes of Legionella pneumophila in parasitism of protozoan hosts and human macrophages.
    Habyarimana F; Al-Khodor S; Kalia A; Graham JE; Price CT; Garcia MT; Kwaik YA
    Environ Microbiol; 2008 Jun; 10(6):1460-74. PubMed ID: 18279343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila.
    Bandyopadhyay P; Liu S; Gabbai CB; Venitelli Z; Steinman HM
    Infect Immun; 2007 Feb; 75(2):723-35. PubMed ID: 17101653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An iron- and fur-repressed Legionella pneumophila gene that promotes intracellular infection and encodes a protein with similarity to the Escherichia coli aerobactin synthetases.
    Hickey EK; Cianciotto NP
    Infect Immun; 1997 Jan; 65(1):133-43. PubMed ID: 8975903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Legionella pneumophila genes required for growth within and killing of human macrophages.
    Sadosky AB; Wiater LA; Shuman HA
    Infect Immun; 1993 Dec; 61(12):5361-73. PubMed ID: 8225610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.