These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 8626332)

  • 21. Significance of HPr in catabolite repression of alpha-amylase.
    Voskuil MI; Chambliss GH
    J Bacteriol; 1996 Dec; 178(23):7014-5. PubMed ID: 8955329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Keeping signals straight in transcription regulation: specificity determinants for the interaction of a family of conserved bacterial RNA-protein couples.
    Schilling O; Herzberg C; Hertrich T; Vörsmann H; Jessen D; Hübner S; Titgemeyer F; Stülke J
    Nucleic Acids Res; 2006; 34(21):6102-15. PubMed ID: 17074746
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr.
    Fujita Y; Miwa Y; Galinier A; Deutscher J
    Mol Microbiol; 1995 Sep; 17(5):953-60. PubMed ID: 8596444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon catabolite control of the metabolic network in Bacillus subtilis.
    Fujita Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):245-59. PubMed ID: 19202299
    [TBL] [Abstract][Full Text] [Related]  

  • 25. trans-acting factors affecting carbon catabolite repression of the hut operon in Bacillus subtilis.
    Zalieckas JM; Wray LV; Fisher SH
    J Bacteriol; 1999 May; 181(9):2883-8. PubMed ID: 10217782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements.
    Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y
    Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?
    Hueck CJ; Hillen W
    Mol Microbiol; 1995 Feb; 15(3):395-401. PubMed ID: 7540244
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6).
    Puri-Taneja A; Paul S; Chen Y; Hulett FM
    J Bacteriol; 2006 Feb; 188(4):1266-78. PubMed ID: 16452408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon.
    Miwa Y; Fujita Y
    J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catabolite repression and activation in Bacillus subtilis: dependency on CcpA, HPr, and HprK.
    Lorca GL; Chung YJ; Barabote RD; Weyler W; Schilling CH; Saier MH
    J Bacteriol; 2005 Nov; 187(22):7826-39. PubMed ID: 16267306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcriptional analysis of the bglP gene from Streptococcus mutans.
    Cote CK; Honeyman AL
    BMC Microbiol; 2006 Apr; 6():37. PubMed ID: 16630357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CcpB, a novel transcription factor implicated in catabolite repression in Bacillus subtilis.
    Chauvaux S; Paulsen IT; Saier MH
    J Bacteriol; 1998 Feb; 180(3):491-7. PubMed ID: 9457849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Elements involved in catabolite repression and substrate induction of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Pérez-Martínez G
    J Bacteriol; 1999 Jul; 181(13):3928-34. PubMed ID: 10383959
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of the bglH gene of Lactobacillus plantarum is controlled by carbon catabolite repression.
    Marasco R; Muscariello L; Varcamonti M; De Felice M; Sacco M
    J Bacteriol; 1998 Jul; 180(13):3400-4. PubMed ID: 9642194
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD.
    Puri-Taneja A; Schau M; Chen Y; Hulett FM
    J Bacteriol; 2007 May; 189(9):3348-58. PubMed ID: 17322317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of the lic operon of Bacillus subtilis and characterization of potential phosphorylation sites of the LicR regulator protein by site-directed mutagenesis.
    Tobisch S; Stülke J; Hecker M
    J Bacteriol; 1999 Aug; 181(16):4995-5003. PubMed ID: 10438772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phosphorylation of HPr and Crh by HprK, early steps in the catabolite repression signalling pathway for the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Deutscher J; Galinier A
    J Bacteriol; 1999 May; 181(9):2966-9. PubMed ID: 10217795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis.
    Presecan-Siedel E; Galinier A; Longin R; Deutscher J; Danchin A; Glaser P; Martin-Verstraete I
    J Bacteriol; 1999 Nov; 181(22):6889-97. PubMed ID: 10559153
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphotransferase System Uptake and Metabolism of the β-Glucoside Salicin Impact Group A Streptococcal Bloodstream Survival and Soft Tissue Infection.
    Braza RE; Silver AB; Sundar GS; Davis SE; Razi A; Islam E; Hart M; Zhu J; Le Breton Y; McIver KS
    Infect Immun; 2020 Sep; 88(10):. PubMed ID: 32719156
    [No Abstract]   [Full Text] [Related]  

  • 40. Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation.
    Gulati A; Mahadevan S
    Genes Cells; 2000 Apr; 5(4):239-50. PubMed ID: 10792463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.