These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 8626346)
1. Sensitivity of polyamine-deficient Saccharomyces cerevisiae to elevated temperatures. Balasundaram D; Tabor CW; Tabor H J Bacteriol; 1996 May; 178(9):2721-4. PubMed ID: 8626346 [TBL] [Abstract][Full Text] [Related]
2. The presence of an active S-adenosylmethionine decarboxylase gene increases the growth defect observed in Saccharomyces cerevisiae mutants unable to synthesize putrescine, spermidine, and spermine. Balasundaram D; Xie QW; Tabor CW; Tabor H J Bacteriol; 1994 Oct; 176(20):6407-9. PubMed ID: 7929015 [TBL] [Abstract][Full Text] [Related]
3. The biochemistry, genetics, and regulation of polyamine biosynthesis in Saccharomyces cerevisiae. Tabor CW; Tabor H; Tyagi AK; Cohn MS Fed Proc; 1982 Dec; 41(14):3084-8. PubMed ID: 6754461 [TBL] [Abstract][Full Text] [Related]
4. Oxygen toxicity in a polyamine-depleted spe2 delta mutant of Saccharomyces cerevisiae. Balasundaram D; Tabor CW; Tabor H Proc Natl Acad Sci U S A; 1993 May; 90(10):4693-7. PubMed ID: 8506320 [TBL] [Abstract][Full Text] [Related]
5. Mutants of Saccharomyces cerevisiae deficient in polyamine biosynthesis: studies on the regulation of ornithine decarboxylase. Tabor CW Med Biol; 1981 Dec; 59(5-6):272-8. PubMed ID: 7040829 [TBL] [Abstract][Full Text] [Related]
6. Spermidine or spermine is essential for the aerobic growth of Saccharomyces cerevisiae. Balasundaram D; Tabor CW; Tabor H Proc Natl Acad Sci U S A; 1991 Jul; 88(13):5872-6. PubMed ID: 2062864 [TBL] [Abstract][Full Text] [Related]
7. The role of polyamine depletion and accumulation of decarboxylated S-adenosylmethionine in the inhibition of growth of SV-3T3 cells treated with alpha-difluoromethylornithine. Pegg AE Biochem J; 1984 Nov; 224(1):29-38. PubMed ID: 6439194 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of Saccharomyces cerevisiae mutants deficient in S-adenosylmethionine decarboxylase, spermidine, and spermine. Cohn MS; Tabor CW; Tabor H J Bacteriol; 1978 Apr; 134(1):208-13. PubMed ID: 348678 [TBL] [Abstract][Full Text] [Related]
9. Elevation of cellular Mg Hanner AS; Dunworth M; Casero RA; MacDiarmid CW; Park MH J Biol Chem; 2019 Nov; 294(45):17131-17142. PubMed ID: 31548311 [TBL] [Abstract][Full Text] [Related]
10. Expression of a heterologous S-adenosylmethionine decarboxylase cDNA in plants demonstrates that changes in S-adenosyl-L-methionine decarboxylase activity determine levels of the higher polyamines spermidine and spermine. Thu-Hang P; Bassie L; Safwat G; Trung-Nghia P; Christou P; Capell T Plant Physiol; 2002 Aug; 129(4):1744-54. PubMed ID: 12177487 [TBL] [Abstract][Full Text] [Related]
11. Mass screening for mutants in the polyamine biosynthetic pathway in Saccharomyces cerevisiae. Tabor H; Tabor CW; Cohn MS Methods Enzymol; 1983; 94():104-8. PubMed ID: 6353146 [No Abstract] [Full Text] [Related]
12. Effects of inhibitors of spermidine and spermine synthesis on polyamine concentrations and growth of transformed mouse fibroblasts. Pegg AE; Borchardt RT; Coward JK Biochem J; 1981 Jan; 194(1):79-89. PubMed ID: 7305994 [TBL] [Abstract][Full Text] [Related]
13. Polyamine deficiency leads to accumulation of reactive oxygen species in a spe2Delta mutant of Saccharomyces cerevisiae. Chattopadhyay MK; Tabor CW; Tabor H Yeast; 2006 Jul; 23(10):751-61. PubMed ID: 16862607 [TBL] [Abstract][Full Text] [Related]
14. Study of spermine and spermidine effects on Saccharomyces cerevisiae. Polyamine production in different growth conditions and in the presence of interleukin-2. Del Carratore R; Bronzetti G; Valenti D J Environ Pathol Toxicol Oncol; 1993; 12(3):143-7. PubMed ID: 8189367 [TBL] [Abstract][Full Text] [Related]
15. Polyamine metabolism in Saccharomyces cerevisiae exposed to ethanol. Walters D; Cowley T Microbiol Res; 1998 Aug; 153(2):179-84. PubMed ID: 9760751 [TBL] [Abstract][Full Text] [Related]
16. Regulation of polyamine content in cultured fibroblasts. Bethell DR; Hibasami H; Pegg AE Am J Physiol; 1982 Nov; 243(5):C262-9. PubMed ID: 6291400 [TBL] [Abstract][Full Text] [Related]
17. Effects of the S-adenosylmethionine decarboxylase inhibitor, 5'-([(Z)-4-amino-2-butenyl]methylamino)-5'-deoxyadenosine, on cell growth and polyamine metabolism and transport in Chinese hamster ovary cell cultures. Byers TL; Wechter RS; Hu RH; Pegg AE Biochem J; 1994 Oct; 303 ( Pt 1)(Pt 1):89-96. PubMed ID: 7945270 [TBL] [Abstract][Full Text] [Related]
18. Cytosolic and nuclear spermidine acetyltransferases in growing NIH 3T3 fibroblasts stimulated with serum or polyamines: relationship to polyamine-biosynthetic decarboxylases and histone acetyltransferase. Desiderio MA; Mattei S; Biondi G; Colombo MP Biochem J; 1993 Jul; 293 ( Pt 2)(Pt 2):475-9. PubMed ID: 8343127 [TBL] [Abstract][Full Text] [Related]
19. Indirect evidence for a strict negative control of S-adenosyl-L-methionine decarboxylase by spermidine in rat hepatoma cells. Mamont PS; Joder-Ohlenbusch AM; Nussli M; Grove J Biochem J; 1981 May; 196(2):411-22. PubMed ID: 6797404 [TBL] [Abstract][Full Text] [Related]
20. Transgenic mice overexpressing ornithine and S-adenosylmethionine decarboxylases maintain a physiological polyamine homoeostasis in their tissues. Heljasvaara R; Veress I; Halmekytö M; Alhonen L; Jänne J; Laajala P; Pajunen A Biochem J; 1997 Apr; 323 ( Pt 2)(Pt 2):457-62. PubMed ID: 9163338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]