These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 8626401)

  • 1. Real time kinetics of the DnaK/DnaJ/GrpE molecular chaperone machine action.
    Banecki B; Zylicz M
    J Biol Chem; 1996 Mar; 271(11):6137-43. PubMed ID: 8626401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning of DnaK chaperone action by nonnative protein sensor DnaJ and thermosensor GrpE.
    Siegenthaler RK; Christen P
    J Biol Chem; 2006 Nov; 281(45):34448-56. PubMed ID: 16940296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system.
    Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P
    J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE.
    Pierpaoli EV; Sandmeier E; Schönfeld HJ; Christen P
    J Biol Chem; 1998 Mar; 273(12):6643-9. PubMed ID: 9506960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism.
    Packschies L; Theyssen H; Buchberger A; Bukau B; Goody RS; Reinstein J
    Biochemistry; 1997 Mar; 36(12):3417-22. PubMed ID: 9131990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.
    Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B
    EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE.
    Szabo A; Langer T; Schröder H; Flanagan J; Bukau B; Hartl FU
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10345-9. PubMed ID: 7937953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ.
    Suh WC; Lu CZ; Gross CA
    J Biol Chem; 1999 Oct; 274(43):30534-9. PubMed ID: 10521435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical interactions between members of the DnaK chaperone machinery: characterization of the DnaK.GrpE complex.
    Reid KL; Fink AL
    Cell Stress Chaperones; 1996 Jun; 1(2):127-37. PubMed ID: 9222598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdomain communication in the molecular chaperone DnaK.
    Han W; Christen P
    Biochem J; 2003 Feb; 369(Pt 3):627-34. PubMed ID: 12383055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Divergent effects of ATP on the binding of the DnaK and DnaJ chaperones to each other, or to their various native and denatured protein substrates.
    Wawrzynów A; Zylicz M
    J Biol Chem; 1995 Aug; 270(33):19300-6. PubMed ID: 7642605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of the targeting action of DnaJ in the DnaK molecular chaperone system.
    Han W; Christen P
    J Biol Chem; 2003 May; 278(21):19038-43. PubMed ID: 12654915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-grpE system.
    Silberg JJ; Hoff KG; Vickery LE
    J Bacteriol; 1998 Dec; 180(24):6617-24. PubMed ID: 9852006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates.
    Russell R; Wali Karzai A; Mehl AF; McMacken R
    Biochemistry; 1999 Mar; 38(13):4165-76. PubMed ID: 10194333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK.
    Liberek K; Marszalek J; Ang D; Georgopoulos C; Zylicz M
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2874-8. PubMed ID: 1826368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone.
    Gässler CS; Buchberger A; Laufen T; Mayer MP; Schröder H; Valencia A; Bukau B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15229-34. PubMed ID: 9860951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The importance of having thermosensor control in the DnaK chaperone system.
    Siegenthaler RK; Christen P
    J Biol Chem; 2005 Apr; 280(15):14395-401. PubMed ID: 15705578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The functional cycle and regulation of the Thermus thermophilus DnaK chaperone system.
    Klostermeier D; Seidel R; Reinstein J
    J Mol Biol; 1999 Apr; 287(3):511-25. PubMed ID: 10092456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.