BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 8626455)

  • 1. Acylation targets emdothelial nitric-oxide synthase to plasmalemmal caveolae.
    Shaul PW; Smart EJ; Robinson LJ; German Z; Yuhanna IS; Ying Y; Anderson RG; Michel T
    J Biol Chem; 1996 Mar; 271(11):6518-22. PubMed ID: 8626455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic regulation of endothelial nitric oxide synthase: complementary roles of dual acylation and caveolin interactions.
    Feron O; Michel JB; Sase K; Michel T
    Biochemistry; 1998 Jan; 37(1):193-200. PubMed ID: 9425039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae.
    Prabhakar P; Cheng V; Michel T
    J Biol Chem; 2000 Jun; 275(25):19416-21. PubMed ID: 10787410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization.
    Liu J; García-Cardeña G; Sessa WC
    Biochemistry; 1996 Oct; 35(41):13277-81. PubMed ID: 8873592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposing effects of reactive oxygen species and cholesterol on endothelial nitric oxide synthase and endothelial cell caveolae.
    Peterson TE; Poppa V; Ueba H; Wu A; Yan C; Berk BC
    Circ Res; 1999 Jul; 85(1):29-37. PubMed ID: 10400908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting and translocation of endothelial nitric oxide synthase.
    Michel T
    Braz J Med Biol Res; 1999 Nov; 32(11):1361-6. PubMed ID: 10559837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting of a G alpha subunit (Gi1 alpha) and c-Src tyrosine kinase to caveolae membranes: clarifying the role of N-myristoylation.
    Song KS; Sargiacomo M; Galbiati F; Parenti M; Lisanti MP
    Cell Mol Biol (Noisy-le-grand); 1997 May; 43(3):293-303. PubMed ID: 9193783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling.
    García-Cardeña G; Oh P; Liu J; Schnitzer JE; Sessa WC
    Proc Natl Acad Sci U S A; 1996 Jun; 93(13):6448-53. PubMed ID: 8692835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca(2+)-calmodulin.
    Yeh DC; Duncan JA; Yamashita S; Michel T
    J Biol Chem; 1999 Nov; 274(46):33148-54. PubMed ID: 10551886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells.
    Feron O; Belhassen L; Kobzik L; Smith TW; Kelly RA; Michel T
    J Biol Chem; 1996 Sep; 271(37):22810-4. PubMed ID: 8798458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonist-modulated targeting of the EDG-1 receptor to plasmalemmal caveolae. eNOS activation by sphingosine 1-phosphate and the role of caveolin-1 in sphingolipid signal transduction.
    Igarashi J; Michel T
    J Biol Chem; 2000 Oct; 275(41):32363-70. PubMed ID: 10921915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase.
    Michel JB; Feron O; Sase K; Prabhakar P; Michel T
    J Biol Chem; 1997 Oct; 272(41):25907-12. PubMed ID: 9325323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The endothelial nitric-oxide synthase-caveolin regulatory cycle.
    Feron O; Saldana F; Michel JB; Michel T
    J Biol Chem; 1998 Feb; 273(6):3125-8. PubMed ID: 9452418
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VEGF-induced permeability increase is mediated by caveolae.
    Feng Y; Venema VJ; Venema RC; Tsai N; Behzadian MA; Caldwell RB
    Invest Ophthalmol Vis Sci; 1999 Jan; 40(1):157-67. PubMed ID: 9888439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin.
    Michel JB; Feron O; Sacks D; Michel T
    J Biol Chem; 1997 Jun; 272(25):15583-6. PubMed ID: 9188442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ flow activates endothelial nitric oxide synthase in luminal caveolae of endothelium with rapid caveolin dissociation and calmodulin association.
    Rizzo V; McIntosh DP; Oh P; Schnitzer JE
    J Biol Chem; 1998 Dec; 273(52):34724-9. PubMed ID: 9856995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae.
    Chambliss KL; Yuhanna IS; Mineo C; Liu P; German Z; Sherman TS; Mendelsohn ME; Anderson RG; Shaul PW
    Circ Res; 2000 Nov; 87(11):E44-52. PubMed ID: 11090554
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo.
    García-Cardeña G; Martasek P; Masters BS; Skidd PM; Couet J; Li S; Lisanti MP; Sessa WC
    J Biol Chem; 1997 Oct; 272(41):25437-40. PubMed ID: 9325253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subcellular targeting and agonist-induced site-specific phosphorylation of endothelial nitric-oxide synthase.
    Gonzalez E; Kou R; Lin AJ; Golan DE; Michel T
    J Biol Chem; 2002 Oct; 277(42):39554-60. PubMed ID: 12189156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A caveolar complex between the cationic amino acid transporter 1 and endothelial nitric-oxide synthase may explain the "arginine paradox".
    McDonald KK; Zharikov S; Block ER; Kilberg MS
    J Biol Chem; 1997 Dec; 272(50):31213-6. PubMed ID: 9395443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.