These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8626658)

  • 1. Structural requirements of heparin binding to Chlamydia trachomatis.
    Chen JC; Zhang JP; Stephens RS
    J Biol Chem; 1996 May; 271(19):11134-40. PubMed ID: 8626658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chlamydia trachomatis glycosaminoglycan-dependent and independent attachment to eukaryotic cells.
    Chen JC; Stephens RS
    Microb Pathog; 1997 Jan; 22(1):23-30. PubMed ID: 9032759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of C. trachomatis attachment to eukaryotic host cells.
    Zhang JP; Stephens RS
    Cell; 1992 May; 69(5):861-9. PubMed ID: 1591780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells.
    Chen JC; Stephens RS
    Mol Microbiol; 1994 Feb; 11(3):501-7. PubMed ID: 8152374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infectivity of Chlamydia trachomatis serovar LGV but not E is dependent on host cell heparan sulfate.
    Taraktchoglou M; Pacey AA; Turnbull JE; Eley A
    Infect Immun; 2001 Feb; 69(2):968-76. PubMed ID: 11159992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells.
    Su H; Raymond L; Rockey DD; Fischer E; Hackstadt T; Caldwell HD
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):11143-8. PubMed ID: 8855323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis.
    Stephens RS; Fawaz FS; Kennedy KA; Koshiyama K; Nichols B; van Ooij C; Engel JN
    Infect Immun; 2000 Mar; 68(3):1080-5. PubMed ID: 10678910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of chemically modified heparin on Chlamydia trachomatis serovar L2 infection of eukaryotic cells in culture.
    Yabushita H; Noguchi Y; Habuchi H; Ashikari S; Nakabe K; Fujita M; Noguchi M; Esko JD; Kimata K
    Glycobiology; 2002 May; 12(5):345-51. PubMed ID: 12070077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulfate glycosaminoglycans.
    Stephens RS; Poteralski JM; Olinger L
    Infect Immun; 2006 Mar; 74(3):1795-9. PubMed ID: 16495553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mimicry and Chlamydia trachomatis infection of eukaryotic cells.
    Stephens RS
    Trends Microbiol; 1994 Mar; 2(3):99-101. PubMed ID: 8156278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells.
    Rasmussen-Lathrop SJ; Koshiyama K; Phillips N; Stephens RS
    Cell Microbiol; 2000 Apr; 2(2):137-44. PubMed ID: 11207570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host nectin-1 is required for efficient Chlamydia trachomatis serovar E development.
    Hall JV; Sun J; Slade J; Kintner J; Bambino M; Whittimore J; Schoborg RV
    Front Cell Infect Microbiol; 2014; 4():158. PubMed ID: 25414835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorate: a reversible inhibitor of proteoglycan sulphation in Chlamydia trachomatis-infected cells.
    Fadel S; Eley A
    J Med Microbiol; 2004 Feb; 53(Pt 2):93-95. PubMed ID: 14729927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process.
    Carabeo RA; Hackstadt T
    Infect Immun; 2001 Sep; 69(9):5899-904. PubMed ID: 11500469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmid Negative Regulation of CPAF Expression Is Pgp4 Independent and Restricted to Invasive
    Patton MJ; Chen CY; Yang C; McCorrister S; Grant C; Westmacott G; Yuan XY; Ochoa E; Fariss R; Whitmire WM; Carlson JH; Caldwell HD; McClarty G
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382731
    [No Abstract]   [Full Text] [Related]  

  • 16. Sulfated polysaccharides and a synthetic sulfated polymer are potent inhibitors of Chlamydia trachomatis infectivity in vitro but lack protective efficacy in an in vivo murine model of chlamydial genital tract infection.
    Su H; Caldwell HD
    Infect Immun; 1998 Mar; 66(3):1258-60. PubMed ID: 9488423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of cell-surface heparin/heparan sulfate-binding proteins of a human uterine epithelial cell line (RL95).
    Raboudi N; Julian J; Rohde LH; Carson DD
    J Biol Chem; 1992 Jun; 267(17):11930-9. PubMed ID: 1601862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor.
    Aviezer D; Levy E; Safran M; Svahn C; Buddecke E; Schmidt A; David G; Vlodavsky I; Yayon A
    J Biol Chem; 1994 Jan; 269(1):114-21. PubMed ID: 8276782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells.
    Kuo CC; Grayston T
    Infect Immun; 1976 Apr; 13(4):1103-9. PubMed ID: 179950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between pseudorabies virus and heparin/heparan sulfate. Pseudorabies virus mutants differ in their interaction with heparin/heparan sulfate when altered for specific glycoprotein C heparin-binding domain.
    Trybala E; Bergström T; Spillmann D; Svennerholm B; Flynn SJ; Ryan P
    J Biol Chem; 1998 Feb; 273(9):5047-52. PubMed ID: 9478954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.