These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 8626659)
21. A chaperone network controls the heat shock response in E. coli. Guisbert E; Herman C; Lu CZ; Gross CA Genes Dev; 2004 Nov; 18(22):2812-21. PubMed ID: 15545634 [TBL] [Abstract][Full Text] [Related]
22. DnaK/DnaJ chaperone system reactivates endogenous E. coli thermostable FBP aldolase in vivo and in vitro; the effect is enhanced by GroE heat shock proteins. Kedzierska S; Jezierski G; Taylor A Cell Stress Chaperones; 2001 Jan; 6(1):29-37. PubMed ID: 11525240 [TBL] [Abstract][Full Text] [Related]
23. Levels of DnaK and DnaJ provide tight control of heat shock gene expression and protein repair in Escherichia coli. Tomoyasu T; Ogura T; Tatsuta T; Bukau B Mol Microbiol; 1998 Nov; 30(3):567-81. PubMed ID: 9822822 [TBL] [Abstract][Full Text] [Related]
24. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. Ziemienowicz A; Skowyra D; Zeilstra-Ryalls J; Fayet O; Georgopoulos C; Zylicz M J Biol Chem; 1993 Dec; 268(34):25425-31. PubMed ID: 7902351 [TBL] [Abstract][Full Text] [Related]
25. Low temperature of GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor DnaK. Vorderwülbecke S; Kramer G; Merz F; Kurz TA; Rauch T; Zachmann-Brand B; Bukau B; Deuerling E FEBS Lett; 2005 Jun; 579(15):181-7. PubMed ID: 16021693 [TBL] [Abstract][Full Text] [Related]
26. Downregulation of the heat shock response is independent of DnaK and sigma32 levels in Caulobacter crescentus. da Silva AC; Simão RC; Susin MF; Baldini RL; Avedissian M; Gomes SL Mol Microbiol; 2003 Jul; 49(2):541-53. PubMed ID: 12828648 [TBL] [Abstract][Full Text] [Related]
27. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli. Nagai H; Yuzawa H; Kanemori M; Yura T Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941 [TBL] [Abstract][Full Text] [Related]
28. Overexpression of dnaK/dnaJ and groEL confers freeze tolerance to Escherichia coli. Chow KC; Tung WL Biochem Biophys Res Commun; 1998 Dec; 253(2):502-5. PubMed ID: 9878565 [TBL] [Abstract][Full Text] [Related]
29. The effect of co-overproduction of DnaK/DnaJ/GrpE and ClpB proteins on the removal of heat-aggregated proteins from Escherichia coli DeltaclpB mutant cells--new insight into the role of Hsp70 in a functional cooperation with Hsp100. Kedzierska S; Matuszewska E FEMS Microbiol Lett; 2001 Nov; 204(2):355-60. PubMed ID: 11731148 [TBL] [Abstract][Full Text] [Related]
30. Influence of the GroE molecular chaperone machine on the in vitro refolding of Escherichia coli beta-galactosidase. Ayling A; Baneyx F Protein Sci; 1996 Mar; 5(3):478-87. PubMed ID: 8868484 [TBL] [Abstract][Full Text] [Related]
31. Low temperature or GroEL/ES overproduction permits growth of Escherichia coli cells lacking trigger factor and DnaK. Vorderwülbecke S; Kramer G; Merz F; Kurz TA; Rauch T; Zachmann-Brand B; Bukau B; Deuerling E FEBS Lett; 2004 Feb; 559(1-3):181-7. PubMed ID: 14960329 [TBL] [Abstract][Full Text] [Related]
32. Identification of thermolabile Escherichia coli proteins: prevention and reversion of aggregation by DnaK and ClpB. Mogk A; Tomoyasu T; Goloubinoff P; Rüdiger S; Röder D; Langen H; Bukau B EMBO J; 1999 Dec; 18(24):6934-49. PubMed ID: 10601016 [TBL] [Abstract][Full Text] [Related]
33. Synthesis of chloramphenicol acetyltransferase in a coupled transcription-translation in vitro system lacking the chaperones DnaK and DnaJ. Vysokanov AV FEBS Lett; 1995 Nov; 375(3):211-4. PubMed ID: 7498501 [TBL] [Abstract][Full Text] [Related]
34. Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli. Kyratsous CA; Panagiotidis CA Methods Mol Biol; 2012; 824():109-29. PubMed ID: 22160895 [TBL] [Abstract][Full Text] [Related]
35. A bipartite signaling mechanism involved in DnaJ-mediated activation of the Escherichia coli DnaK protein. Karzai AW; McMacken R J Biol Chem; 1996 May; 271(19):11236-46. PubMed ID: 8626673 [TBL] [Abstract][Full Text] [Related]
37. Cooperation of the DnaK and GroE chaperone systems in the folding pathway of plant ferredoxin-NADP+ reductase expressed in Escherichia coli. Dionisi HM; Checa SK; Krapp AR; Arakaki AK; Ceccarelli EA; Carrillo N; Viale AM Eur J Biochem; 1998 Feb; 251(3):724-8. PubMed ID: 9490045 [TBL] [Abstract][Full Text] [Related]
38. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Kerner MJ; Naylor DJ; Ishihama Y; Maier T; Chang HC; Stines AP; Georgopoulos C; Frishman D; Hayer-Hartl M; Mann M; Hartl FU Cell; 2005 Jul; 122(2):209-20. PubMed ID: 16051146 [TBL] [Abstract][Full Text] [Related]
39. Probing the different chaperone activities of the bacterial HSP70-HSP40 system using a thermolabile luciferase substrate. Sharma SK; De Los Rios P; Goloubinoff P Proteins; 2011 Jun; 79(6):1991-8. PubMed ID: 21488102 [TBL] [Abstract][Full Text] [Related]
40. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. Gamer J; Multhaup G; Tomoyasu T; McCarty JS; Rüdiger S; Schönfeld HJ; Schirra C; Bujard H; Bukau B EMBO J; 1996 Feb; 15(3):607-17. PubMed ID: 8599944 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]