These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 8626714)
1. DNA binding by the coliphage 186 repressor protein CI. Dodd IB; Egan JB J Biol Chem; 1996 May; 271(19):11532-40. PubMed ID: 8626714 [TBL] [Abstract][Full Text] [Related]
2. The CII protein of bacteriophage 186 establishes lysogeny by activating a promoter upstream of the lysogenic promoter. Neufing PJ; Shearwin KE; Camerotto J; Egan JB Mol Microbiol; 1996 Aug; 21(4):751-61. PubMed ID: 8878038 [TBL] [Abstract][Full Text] [Related]
3. Highly cooperative DNA binding by the coliphage HK022 repressor. Carlson NG; Little JW J Mol Biol; 1993 Apr; 230(4):1108-30. PubMed ID: 8487297 [TBL] [Abstract][Full Text] [Related]
4. DNA conformational changes associated with the cooperative binding of cI-repressor of bacteriophage lambda to OR. Strahs D; Brenowitz M J Mol Biol; 1994 Dec; 244(5):494-510. PubMed ID: 7990137 [TBL] [Abstract][Full Text] [Related]
5. The operator-early promoter regions of Shiga-toxin bearing phage H-19B. Shi T; Friedman DI Mol Microbiol; 2001 Aug; 41(3):585-99. PubMed ID: 11532127 [TBL] [Abstract][Full Text] [Related]
6. Purification and self-association equilibria of the lysis-lysogeny switch proteins of coliphage 186. Shearwin KE; Egan JB J Biol Chem; 1996 May; 271(19):11525-31. PubMed ID: 8626713 [TBL] [Abstract][Full Text] [Related]
7. Octamerization of lambda CI repressor is needed for effective repression of P(RM) and efficient switching from lysogeny. Dodd IB; Perkins AJ; Tsemitsidis D; Egan JB Genes Dev; 2001 Nov; 15(22):3013-22. PubMed ID: 11711436 [TBL] [Abstract][Full Text] [Related]
12. The helix-turn-helix motif of the coliphage 186 immunity repressor binds to two distinct recognition sequences. Shearwin KE; Dodd IB; Egan JB J Biol Chem; 2002 Feb; 277(5):3186-94. PubMed ID: 11700308 [TBL] [Abstract][Full Text] [Related]
13. Interaction at a distance between multiple operators controls the adjacent, divergently transcribed glpTQ-glpACB operons of Escherichia coli K-12. Larson TJ; Cantwell JS; van Loo-Bhattacharya AT J Biol Chem; 1992 Mar; 267(9):6114-21. PubMed ID: 1556120 [TBL] [Abstract][Full Text] [Related]
14. Interaction of a regulatory protein with a DNA target containing two overlapping binding sites. Lloubes R; Granger-Schnarr M; Lazdunski C; Schnarr M J Biol Chem; 1991 Feb; 266(4):2303-12. PubMed ID: 1989984 [TBL] [Abstract][Full Text] [Related]
15. Operator interactions by the Bacillus subtilis arginine repressor/activator, AhrC: novel positioning and DNA-mediated assembly of a transcriptional activator at catabolic sites. Miller CM; Baumberg S; Stockley PG Mol Microbiol; 1997 Oct; 26(1):37-48. PubMed ID: 9383188 [TBL] [Abstract][Full Text] [Related]
16. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing. Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906 [TBL] [Abstract][Full Text] [Related]
17. Halobacterium halobium strains lysogenic for phage phi H contain a protein resembling coliphage repressors. Ken R; Hackett NR J Bacteriol; 1991 Feb; 173(3):955-60. PubMed ID: 1991733 [TBL] [Abstract][Full Text] [Related]
18. Regulatory factors acting at the bacteriophage Mu middle promoter. Kahmeyer-Gabbe M; Howe MM J Bacteriol; 1996 Mar; 178(6):1585-92. PubMed ID: 8626285 [TBL] [Abstract][Full Text] [Related]
19. Genes for the establishment and maintenance of lysogeny by the temperate coliphage 186. Lamont I; Richardson H; Carter DR; Egan JB J Bacteriol; 1993 Aug; 175(16):5286-8. PubMed ID: 8349570 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the lysogenic repressor (c) from transposable Mu-like bacteriophage D108. Kukolj G; DuBow MS Nucleic Acids Res; 1991 Nov; 19(21):5949-56. PubMed ID: 1658747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]