BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8626740)

  • 1. A requirement for matrix processing peptidase but not for mitochondrial chaperonin in the covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein.
    Robinson KM; Lemire BD
    J Biol Chem; 1996 Feb; 271(8):4061-7. PubMed ID: 8626740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent attachment of FAD to the yeast succinate dehydrogenase flavoprotein requires import into mitochondria, presequence removal, and folding.
    Robinson KM; Lemire BD
    J Biol Chem; 1996 Feb; 271(8):4055-60. PubMed ID: 8626739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The covalent attachment of FAD to the flavoprotein of Saccharomyces cerevisiae succinate dehydrogenase is not necessary for import and assembly into mitochondria.
    Robinson KM; Rothery RA; Weiner JH; Lemire BD
    Eur J Biochem; 1994 Jun; 222(3):983-90. PubMed ID: 8026509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria.
    McNeil MB; Hampton HG; Hards KJ; Watson BN; Cook GM; Fineran PC
    FEBS Lett; 2014 Jan; 588(3):414-21. PubMed ID: 24374335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How an assembly factor enhances covalent FAD attachment to the flavoprotein subunit of complex II.
    Maklashina E; Iverson TM; Cecchini G
    J Biol Chem; 2022 Oct; 298(10):102472. PubMed ID: 36089066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavinylation and assembly of succinate dehydrogenase are dependent on the C-terminal tail of the flavoprotein subunit.
    Kim HJ; Jeong MY; Na U; Winge DR
    J Biol Chem; 2012 Nov; 287(48):40670-9. PubMed ID: 23043141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and biochemical analyses reveal insights into covalent flavinylation of the
    Starbird CA; Maklashina E; Sharma P; Qualls-Histed S; Cecchini G; Iverson TM
    J Biol Chem; 2017 Aug; 292(31):12921-12933. PubMed ID: 28615448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Succinate dehydrogenase flavoprotein subunit expression in Saccharomyces cerevisiae--involvement of the mitochondrial FAD transporter, Flx1p.
    Giancaspero TA; Wait R; Boles E; Barile M
    FEBS J; 2008 Mar; 275(6):1103-17. PubMed ID: 18279395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and nucleotide sequence of the Saccharomyces cerevisiae gene for the succinate dehydrogenase flavoprotein subunit.
    Robinson KM; Lemire BD
    J Biol Chem; 1992 May; 267(14):10101-7. PubMed ID: 1577780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The conserved RGxxE motif of the bacterial FAD assembly factor SdhE is required for succinate dehydrogenase flavinylation and activity.
    McNeil MB; Fineran PC
    Biochemistry; 2013 Oct; 52(43):7628-40. PubMed ID: 24070374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent cofactor binding to flavoenzymes requires specific effectors.
    Brandsch R; Bichler V
    Eur J Biochem; 1989 Jun; 182(1):125-8. PubMed ID: 2659351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Riboflavin uptake and FAD synthesis in Saccharomyces cerevisiae mitochondria: involvement of the Flx1p carrier in FAD export.
    Bafunno V; Giancaspero TA; Brizio C; Bufano D; Passarella S; Boles E; Barile M
    J Biol Chem; 2004 Jan; 279(1):95-102. PubMed ID: 14555654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent attachment of FAD derivatives to a fusion protein consisting of 6-hydroxy-D-nicotine oxidase and a mitochondrial presequence. Folding, enzyme activity, and import of the modified protein into yeast mitochondria.
    Stoltz M; Rassow J; Bückmann AF; Brandsch R
    J Biol Chem; 1996 Oct; 271(41):25208-12. PubMed ID: 8810280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution NMR structure of yeast succinate dehydrogenase flavinylation factor Sdh5 reveals a putative Sdh1 binding site.
    Eletsky A; Jeong MY; Kim H; Lee HW; Xiao R; Pagliarini DJ; Prestegard JH; Winge DR; Montelione GT; Szyperski T
    Biochemistry; 2012 Oct; 51(43):8475-7. PubMed ID: 23062074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cytochrome subunit is necessary for covalent FAD attachment to the flavoprotein subunit of p-cresol methylhydroxylase.
    Kim J; Fuller JH; Kuusk V; Cunane L; Chen ZW; Mathews FS; McIntire WS
    J Biol Chem; 1995 Dec; 270(52):31202-9. PubMed ID: 8537385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the human mitochondrial FAD transporter and its potential role in multiple acyl-CoA dehydrogenase deficiency.
    Spaan AN; Ijlst L; van Roermund CW; Wijburg FA; Wanders RJ; Waterham HR
    Mol Genet Metab; 2005 Dec; 86(4):441-7. PubMed ID: 16165386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging concepts in the flavinylation of succinate dehydrogenase.
    Kim HJ; Winge DR
    Biochim Biophys Acta; 2013 May; 1827(5):627-36. PubMed ID: 23380393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro, SDH5-dependent flavinylation of immobilized human respiratory complex II flavoprotein.
    Zafreen L; Walker-Kopp N; Huang LS; Berry E
    Arch Biochem Biophys; 2016 Aug; 604():47-56. PubMed ID: 27296776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of the FAD cofactor to the 8-formyl-derivative in human electron-transferring flavoprotein.
    Augustin P; Toplak M; Fuchs K; Gerstmann EC; Prassl R; Winkler A; Macheroux P
    J Biol Chem; 2018 Feb; 293(8):2829-2840. PubMed ID: 29301933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FAD-dependent regulation of transcription, translation, post-translational processing, and post-processing stability of various mitochondrial acyl-CoA dehydrogenases and of electron transfer flavoprotein and the site of holoenzyme formation.
    Nagao M; Tanaka K
    J Biol Chem; 1992 Sep; 267(25):17925-32. PubMed ID: 1517228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.