These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 8627368)

  • 1. Contingent vulnerability of entorhinal parvalbumin-containing neurons in Alzheimer's disease.
    Solodkin A; Veldhuizen SD; Van Hoesen GW
    J Neurosci; 1996 May; 16(10):3311-21. PubMed ID: 8627368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subfield- and layer-specific changes in parvalbumin, calretinin and calbindin-D28K immunoreactivity in the entorhinal cortex in Alzheimer's disease.
    Mikkonen M; Alafuzoff I; Tapiola T; Soininen H; Miettinen R
    Neuroscience; 1999; 92(2):515-32. PubMed ID: 10408601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of parvalbumin-, calretinin-, and calbindin-D28k-immunoreactive neurons and fibers in the human entorhinal cortex.
    Mikkonen M; Soininen H; Pitkänen A
    J Comp Neurol; 1997 Nov; 388(1):64-88. PubMed ID: 9364239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurochemical Characterization of PSA-NCAM
    Murray HC; Swanson MEV; Dieriks BV; Turner C; Faull RLM; Curtis MA
    Neuroscience; 2018 Feb; 372():289-303. PubMed ID: 29429526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parvalbumin interneurons and calretinin fibers arising from the thalamic nucleus reuniens degenerate in the subiculum after kainic acid-induced seizures.
    Drexel M; Preidt AP; Kirchmair E; Sperk G
    Neuroscience; 2011 Aug; 189(1-2):316-29. PubMed ID: 21616128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transneuronally altered dendritic processing of tangle-free neurons in Alzheimer's disease.
    Ohm TG; Münch S; Schönheit B; Zarski R; Nitsch R
    Acta Neuropathol; 2002 May; 103(5):437-43. PubMed ID: 11935258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity of layer II neurons in human entorhinal cortex.
    Beall MJ; Lewis DA
    J Comp Neurol; 1992 Jul; 321(2):241-66. PubMed ID: 1500542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chandelier cell axons identified by parvalbumin-immunoreactivity in the normal human temporal cortex and in Alzheimer's disease.
    Fonseca M; Soriano E; Ferrer I; Martinez A; Tuñon T
    Neuroscience; 1993 Aug; 55(4):1107-16. PubMed ID: 8232900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of parvalbumin and GABA in nonpyramidal neurons of the rat entorhinal cortex.
    Miettinen M; Koivisto E; Riekkinen P; Miettinen R
    Brain Res; 1996 Jan; 706(1):113-22. PubMed ID: 8720498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entorhinal verrucae geometry is coincident and correlates with Alzheimer's lesions: a combined neuropathology and high-resolution ex vivo MRI analysis.
    Augustinack JC; Huber KE; Postelnicu GM; Kakunoori S; Wang R; van der Kouwe AJ; Wald LL; Stein TD; Frosch MP; Fischl B
    Acta Neuropathol; 2012 Jan; 123(1):85-96. PubMed ID: 22160360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cellular basis for the relative resistance of parvalbumin and calretinin immunoreactive neocortical neurons to the pathology of Alzheimer's disease.
    Sampson VL; Morrison JH; Vickers JC
    Exp Neurol; 1997 May; 145(1):295-302. PubMed ID: 9184132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer's disease: I. Superior frontal and inferior temporal cortex.
    Hof PR; Cox K; Morrison JH
    J Comp Neurol; 1990 Nov; 301(1):44-54. PubMed ID: 2127598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Entorhinal cortex of aged subjects with Down's syndrome shows severe neuronal loss caused by neurofibrillary pathology.
    Sadowski M; Wisniewski HM; Tarnawski M; Kozlowski PB; Lach B; Wegiel J
    Acta Neuropathol; 1999 Feb; 97(2):156-64. PubMed ID: 9928826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease.
    Price JL; Ko AI; Wade MJ; Tsou SK; McKeel DW; Morris JC
    Arch Neurol; 2001 Sep; 58(9):1395-402. PubMed ID: 11559310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cognitive impact of neuronal pathology in the entorhinal cortex and CA1 field in Alzheimer's disease.
    von Gunten A; Kövari E; Bussière T; Rivara CB; Gold G; Bouras C; Hof PR; Giannakopoulos P
    Neurobiol Aging; 2006 Feb; 27(2):270-7. PubMed ID: 16399212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia.
    Luterman JD; Haroutunian V; Yemul S; Ho L; Purohit D; Aisen PS; Mohs R; Pasinetti GM
    Arch Neurol; 2000 Aug; 57(8):1153-60. PubMed ID: 10927795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Volumes of the entorhinal and perirhinal cortices in Alzheimer's disease.
    Juottonen K; Laakso MP; Insausti R; Lehtovirta M; Pitkänen A; Partanen K; Soininen H
    Neurobiol Aging; 1998; 19(1):15-22. PubMed ID: 9562498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parvalbumin and calbindin D-28K in the human entorhinal cortex. An immunohistochemical study.
    Tuñón T; Insausti R; Ferrer I; Sobreviela T; Soriano E
    Brain Res; 1992 Aug; 589(1):24-32. PubMed ID: 1422819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer's disease.
    Frisoni GB; Laakso MP; Beltramello A; Geroldi C; Bianchetti A; Soininen H; Trabucchi M
    Neurology; 1999 Jan; 52(1):91-100. PubMed ID: 9921854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parvalbumin-immunoreactive neurons in the hippocampal formation of Alzheimer's diseased brain.
    Brady DR; Mufson EJ
    Neuroscience; 1997 Oct; 80(4):1113-25. PubMed ID: 9284064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.