These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 8627498)

  • 61. Effect of nematode-trapping fungi on an entomopathogenic nematode originating from the same field site in California.
    Koppenhöfer AM; Jaffee BA; Muldoon AE; Strong DR; Kaya HK
    J Invertebr Pathol; 1996 Nov; 68(3):246-52. PubMed ID: 8931364
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Impact of a Nematode-parasitic Fungus on the Effectiveness of Entomopathogenic Nematodes.
    Timper P; Kaya HK
    J Nematol; 1992 Mar; 24(1):1-8. PubMed ID: 19283194
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Susceptibility of the peachtree borer, Synanthedon exitiosa, to Steinernema carpocapsae and Steinernema riobrave in laboratory and field trials.
    Cottrell TE; Shapiro-Ilan DI
    J Invertebr Pathol; 2006 Jun; 92(2):85-8. PubMed ID: 16707138
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Host range and infectivity of Heterorhabditis bacteriophora (Heterorhabditidae) from Ukraine.
    Stefanovska T; Pidlishyuk V; Kaya H
    Commun Agric Appl Biol Sci; 2008; 73(4):693-8. PubMed ID: 19226814
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simulated roots and host feeding enhance infection of subterranean insects by the entomopathogenic nematode Steinernema carpocapsae.
    Ennis DE; Dillon AB; Griffin CT
    J Invertebr Pathol; 2010 Feb; 103(2):140-3. PubMed ID: 19932700
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Size does matter: the life cycle of Steinernema spp. in micro-insect hosts.
    Bastidas B; Portillo E; San-Blas E
    J Invertebr Pathol; 2014 Sep; 121():46-55. PubMed ID: 25008300
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pheromone extracts act as boosters for entomopathogenic nematodes efficacy.
    Oliveira-Hofman C; Kaplan F; Stevens G; Lewis E; Wu S; Alborn HT; Perret-Gentil A; Shapiro-Ilan DI
    J Invertebr Pathol; 2019 Jun; 164():38-42. PubMed ID: 31034842
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Susceptibility of the strawberry crown moth (Lepidoptera: Sesiidae) to entomopathogenic nematodes.
    Bruck DJ; Edwards DL; Donahue KM
    J Econ Entomol; 2008 Apr; 101(2):251-5. PubMed ID: 18459385
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Preferential infectivity of entomopathogenic nematodes in an envenomed host.
    Mbata GN; Shapiro-Ilan DI; Alborn HT; Strand MR
    Int J Parasitol; 2019 Aug; 49(9):737-745. PubMed ID: 31306662
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Soil moisture effects on the activity of three entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) isolated from Meghalaya, India.
    Yadav AK; Lalramliana
    J Parasit Dis; 2012 Apr; 36(1):94-8. PubMed ID: 23543771
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Control of overwintering filbertworm (Lepidoptera: Tortricidae) larvae with Steinernema carpocapsae.
    Chambers U; Bruck DJ; Olsen J; Walton VM
    J Econ Entomol; 2010 Apr; 103(2):416-22. PubMed ID: 20429457
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Survival and Infectivity of Entomopathogenic Nematodes Formulated in Sodium Alginate Beads.
    Ruiz-Vega J; Cortés-Martínez CI; García-Gutiérrez C
    J Nematol; 2018; 50(3):273-280. PubMed ID: 30451414
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aggregative group behavior in insect parasitic nematode dispersal.
    Shapiro-Ilan DI; Lewis EE; Schliekelman P
    Int J Parasitol; 2014 Jan; 44(1):49-54. PubMed ID: 24184157
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Susceptibility of the Colorado Potato Beetle and the Sugarbeet Wireworm to Steinernema feltiae and S. glaseri.
    Toba HH; Lindegren JE; Turner JE; Vail PV
    J Nematol; 1983 Oct; 15(4):597-601. PubMed ID: 19295854
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Entomopathogenic nematodes for control of diapausing codling moth (Lepidoptera: Tortricidae) in fruit bins.
    Lacey LA; Chauvin RL
    J Econ Entomol; 1999 Feb; 92(1):104-9. PubMed ID: 10036984
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Natal-host environmental effects on juvenile size, transmission success, and operational sex ratio in the entomopathogenic nematode Steinernema carpocapsae.
    Therese MO; Bashey F
    J Parasitol; 2012 Dec; 98(6):1095-100. PubMed ID: 22663291
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Host resistance reverses the outcome of competition between microparasites.
    Gruner DS; Kolekar A; McLaughlin JP; Strong DR
    Ecology; 2009 Jul; 90(7):1721-8. PubMed ID: 19694121
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Phospholipids and their fatty acids in infective juveniles of entomopathogenic steinernematid nematodes.
    Patel MN; Wright DJ
    Comp Biochem Physiol B Biochem Mol Biol; 1997 Nov; 118(3):649-57. PubMed ID: 9467876
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Comparison of three methods for estimating the number of entomopathogenic nematodes present in soil samples.
    Curran J; Heng J
    J Nematol; 1992 Mar; 24(1):170-6. PubMed ID: 19283219
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effect of Soil Texture on the Distribution and Infectivity of Neoaplectana glaseri (Nematoda: Steinernematidae).
    Georgis R; Poinar GO
    J Nematol; 1983 Jul; 15(3):329-32. PubMed ID: 19295812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.