These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8627740)

  • 1. What is the orientation of DNA polymerases on their templates?
    Hughes SH; Hostomsky Z; Le Grice SF; Lentz K; Arnold E
    J Virol; 1996 May; 70(5):2679-83. PubMed ID: 8627740
    [No Abstract]   [Full Text] [Related]  

  • 2. Site-directed mutagenic analysis of viral polymerases and related proteins.
    Boyer PL; Hughes SH
    Methods Enzymol; 1996; 275():538-55. PubMed ID: 9026658
    [No Abstract]   [Full Text] [Related]  

  • 3. A model for DNA polymerase translocation: worm-like movement of DNA within the binding cleft.
    Wlassoff WA; Dymshits GM; Lavrik OI
    FEBS Lett; 1996 Jul; 390(1):6-9. PubMed ID: 8706830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase.
    Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E
    Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations proximal to the minor groove-binding track of human immunodeficiency virus type 1 reverse transcriptase differentially affect utilization of RNA versus DNA as template.
    Fisher TS; Darden T; Prasad VR
    J Virol; 2003 May; 77(10):5837-45. PubMed ID: 12719577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An expanded model of replicating human immunodeficiency virus reverse transcriptase.
    Wöhrl BM; Tantillo C; Arnold E; Le Grice SF
    Biochemistry; 1995 Apr; 34(16):5343-56. PubMed ID: 7537089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A minor groove binding track in reverse transcriptase.
    Bebenek K; Beard WA; Darden TA; Li L; Prasad R; Luton BA; Gorenstein DG; Wilson SH; Kunkel TA
    Nat Struct Biol; 1997 Mar; 4(3):194-7. PubMed ID: 9164459
    [No Abstract]   [Full Text] [Related]  

  • 8. The mechano-chemistry of a monomeric reverse transcriptase.
    Malik O; Khamis H; Rudnizky S; Kaplan A
    Nucleic Acids Res; 2017 Dec; 45(22):12954-12962. PubMed ID: 29165701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex.
    Shamoo Y; Steitz TA
    Cell; 1999 Oct; 99(2):155-66. PubMed ID: 10535734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of DNA and RNA polymerases and their interactions with nucleic acid substrates.
    Arnold E; Ding J; Hughes SH; Hostomsky Z
    Curr Opin Struct Biol; 1995 Feb; 5(1):27-38. PubMed ID: 7539708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase.
    Peliska JA; Benkovic SJ
    Science; 1992 Nov; 258(5085):1112-8. PubMed ID: 1279806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate variations that affect the nucleic acid clamp activity of reverse transcriptases.
    Oz-Gleenberg I; Herzig E; Voronin N; Hizi A
    FEBS J; 2012 May; 279(10):1894-903. PubMed ID: 22443410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parameters that influence processive synthesis and site-specific termination by human immunodeficiency virus reverse transcriptase on RNA and DNA templates.
    DeStefano JJ; Buiser RG; Mallaber LM; Fay PJ; Bambara RA
    Biochim Biophys Acta; 1992 Jul; 1131(3):270-80. PubMed ID: 1378301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain.
    Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM
    J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerases. Two sisters and their cousin.
    Moras D
    Nature; 1993 Aug; 364(6438):572-3. PubMed ID: 7688863
    [No Abstract]   [Full Text] [Related]  

  • 16. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of RNA in enzymatic activity of the reverse transcriptase of hepatitis B viruses.
    Wang GH; Zoulim F; Leber EH; Kitson J; Seeger C
    J Virol; 1994 Dec; 68(12):8437-42. PubMed ID: 7525990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choosing the right sugar: how polymerases select a nucleotide substrate.
    Joyce CM
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1619-22. PubMed ID: 9050827
    [No Abstract]   [Full Text] [Related]  

  • 19. Crystal structure of bacteriophage T7 RNA polymerase at 3.3 A resolution.
    Sousa R; Chung YJ; Rose JP; Wang BC
    Nature; 1993 Aug; 364(6438):593-9. PubMed ID: 7688864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function and structure relationships in DNA polymerases.
    Joyce CM; Steitz TA
    Annu Rev Biochem; 1994; 63():777-822. PubMed ID: 7526780
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.