These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 8628247)
21. Genetic characterization of the polycotyledon locus in tomato. Madishetty K; Bauer P; Sharada MS; Al-Hammadi AS; Sharma R Theor Appl Genet; 2006 Aug; 113(4):673-83. PubMed ID: 16807733 [TBL] [Abstract][Full Text] [Related]
22. The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Seah S; Yaghoobi J; Rossi M; Gleason CA; Williamson VM Theor Appl Genet; 2004 May; 108(8):1635-42. PubMed ID: 14963654 [TBL] [Abstract][Full Text] [Related]
23. Isolation of an 800 kb contiguous DNA fragment encompassing a 3.5-cM region of chromosome 1 in Arabidopsis using YAC clones. Vijayraghavan U; Siddiqi I; Meyerowitz E Genome; 1995 Aug; 38(4):817-23. PubMed ID: 7672612 [TBL] [Abstract][Full Text] [Related]
24. Genetic and contig map of a 2200-kb region encompassing 5.5 cM on chromosome 1 of Arabidopsis thaliana. Hardtke CS; Berleth T Genome; 1996 Dec; 39(6):1086-92. PubMed ID: 8983181 [TBL] [Abstract][Full Text] [Related]
25. A genetic map of tomato based on BC(1) Lycopersicon esculentum x Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Chetelat RT; Meglic V; Cisneros P Genetics; 2000 Feb; 154(2):857-67. PubMed ID: 10655236 [TBL] [Abstract][Full Text] [Related]
26. Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of jointless. Wing RA; Zhang HB; Tanksley SD Mol Gen Genet; 1994 Mar; 242(6):681-8. PubMed ID: 7908716 [TBL] [Abstract][Full Text] [Related]
27. Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovatecontaining region in tomato chromosome 2. Ku HM; Liu J; Doganlar S; Tanksley SD Genome; 2001 Jun; 44(3):470-5. PubMed ID: 11444707 [TBL] [Abstract][Full Text] [Related]
28. Mapping of quantitative trait locus related to submergence tolerance in rice with aid of chromosome walking. Kamolsukyunyong W; Ruanjaichon V; Siangliw M; Kawasaki S; Sasaki T; Vanavichit A; Tragoonrung S DNA Res; 2001 Aug; 8(4):163-71. PubMed ID: 11572482 [TBL] [Abstract][Full Text] [Related]
29. High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Lim GT; Wang GP; Hemming MN; McGrath DJ; Jones DA Theor Appl Genet; 2008 Dec; 118(1):57-75. PubMed ID: 18813906 [TBL] [Abstract][Full Text] [Related]
30. High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. van der Knaap E; Sanyal A; Jackson SA; Tanksley SD Genetics; 2004 Dec; 168(4):2127-40. PubMed ID: 15611181 [TBL] [Abstract][Full Text] [Related]
31. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Thomas CM; Vos P; Zabeau M; Jones DA; Norcott KA; Chadwick BP; Jones JD Plant J; 1995 Nov; 8(5):785-94. PubMed ID: 8528290 [TBL] [Abstract][Full Text] [Related]
32. Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Saliba-Colombani V; Causse M; Gervais L; Philouze J Genome; 2000 Feb; 43(1):29-40. PubMed ID: 10701110 [TBL] [Abstract][Full Text] [Related]
33. Fine mapping in tomato using microsynteny with the Arabidopsis genome: the Diageotropica (Dgt) locus. Oh K; Hardeman K; Ivanchenko MG; Ellard-Ivey M; Nebenführ A; White TJ; Lomax TL Genome Biol; 2002 Aug; 3(9):research0049. PubMed ID: 12225588 [TBL] [Abstract][Full Text] [Related]
34. Fine mapping of ui6.1, a gametophytic factor controlling pollen-side unilateral incompatibility in interspecific solanum hybrids. Li W; Royer S; Chetelat RT Genetics; 2010 Jul; 185(3):1069-80. PubMed ID: 20439771 [TBL] [Abstract][Full Text] [Related]
35. Identification of an 85-kb DNA fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice. Liu N; Shan Y; Wang FP; Xu CG; Peng KM; Li XH; Zhang Q Mol Genet Genomics; 2001 Oct; 266(2):271-5. PubMed ID: 11683269 [TBL] [Abstract][Full Text] [Related]
36. Physical mapping of rice chromosomes 8 and 9 with YAC clones. Antonio BA; Emoto M; Wu J; Ashikawa I; Umehara Y; Kurata N; Sasaki T DNA Res; 1996 Dec; 3(6):393-400. PubMed ID: 9097041 [TBL] [Abstract][Full Text] [Related]
37. Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Suliman-Pollatschek S; Kashkush K; Shats H; Hillel J; Lavi U Cell Mol Biol Lett; 2002; 7(2A):583-97. PubMed ID: 12378264 [TBL] [Abstract][Full Text] [Related]
38. Fine-scale molecular genetic (RFLP) and physical mapping of a 8.9 cM region on the top arm of Arabidopsis chromosome 5 encompassing the male sterility gene, ms1. Thorlby GJ; Shlumukov L; Vizir IY; Yang CY; Mulligan BJ; Wilson ZA Plant J; 1997 Aug; 12(2):471-9. PubMed ID: 9301096 [TBL] [Abstract][Full Text] [Related]
39. Identification of YAC clones containing the mutable slender glume locus slg in rice (Oryza sativa L.). Teraishi M; Hirochika H; Okumoto Y; Horibata A; Yamagata H; Tanisaka T Genome; 2001 Feb; 44(1):1-6. PubMed ID: 11269342 [TBL] [Abstract][Full Text] [Related]