BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 8628318)

  • 1. Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p.
    Suzuki-Fujimoto T; Fukuma M; Yano KI; Sakurai H; Vonika A; Johnston SA; Fukasawa T
    Mol Cell Biol; 1996 May; 16(5):2504-8. PubMed ID: 8628318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intragenic suppression of Gal3C interaction with Gal80 in the Saccharomyces cerevisiae GAL gene switch.
    Diep CQ; Peng G; Bewley M; Pilauri V; Ropson I; Hopper JE
    Genetics; 2006 Jan; 172(1):77-87. PubMed ID: 16219783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state analysis of glucose repression reveals hierarchical expression of proteins under Mig1p control in Saccharomyces cerevisiae.
    Verma M; Bhat PJ; Venkatesh KV
    Biochem J; 2005 Jun; 388(Pt 3):843-9. PubMed ID: 15698380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LowTempGAL: a highly responsive low temperature-inducible GAL system in Saccharomyces cerevisiae.
    Lu Z; Shen Q; Bandari NC; Evans S; McDonnell L; Liu L; Jin W; Luna-Flores CH; Collier T; Talbo G; McCubbin T; Esquirol L; Myers C; Trau M; Dumsday G; Speight R; Howard CB; Vickers CE; Peng B
    Nucleic Acids Res; 2024 May; ():. PubMed ID: 38808673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and Epigenetic Strategies Potentiate Gal4 Activation to Enhance Fitness in Recently Diverged Yeast Species.
    Sood V; Brickner JH
    Curr Biol; 2017 Dec; 27(23):3591-3602.e3. PubMed ID: 29153325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphatidic acid plays a central role in the transcriptional regulation of glycerophospholipid synthesis in Saccharomyces cerevisiae.
    Carman GM; Henry SA
    J Biol Chem; 2007 Dec; 282(52):37293-7. PubMed ID: 17981800
    [No Abstract]   [Full Text] [Related]  

  • 7. Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts.
    Hittinger CT; Rokas A; Carroll SB
    Proc Natl Acad Sci U S A; 2004 Sep; 101(39):14144-9. PubMed ID: 15381776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning enables identification of an alternative yeast galactose utilization pathway.
    Harrison MC; Ubbelohde EJ; LaBella AL; Opulente DA; Wolters JF; Zhou X; Shen XX; Groenewald M; Hittinger CT; Rokas A
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2315314121. PubMed ID: 38669185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GALDAR: A genetically encoded galactose sensor for visualizing sugar metabolism in vivo.
    Sakizli U; Takano T; Yoo SK
    PLoS Biol; 2024 Mar; 22(3):e3002549. PubMed ID: 38502638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Galactose Uptake from Kappaphycus alvarezii Using Saccharomyces cerevisiae through Deletion of Negative Regulators of GAL Genes.
    Sunwoo IY; Sukwong P; Park YR; Jeong DY; Kim SR; Jeong GT; Kim SK
    Appl Biochem Biotechnol; 2021 Feb; 193(2):577-588. PubMed ID: 33043399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise reduction as an emergent property of single-cell aging.
    Liu P; Song R; Elison GL; Peng W; Acar M
    Nat Commun; 2017 Sep; 8(1):680. PubMed ID: 28947742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise reduction facilitated by dosage compensation in gene networks.
    Peng W; Song R; Acar M
    Nat Commun; 2016 Oct; 7():12959. PubMed ID: 27694830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cell size- and cell cycle-aware stochastic model for predicting time-dynamic gene network activity in individual cells.
    Song R; Peng W; Liu P; Acar M
    BMC Syst Biol; 2015 Dec; 9():91. PubMed ID: 26646617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging.
    Liu P; Young TZ; Acar M
    Cell Rep; 2015 Oct; 13(3):634-644. PubMed ID: 26456818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes.
    Upadhyay SK; Sasidhar YU
    J Comput Aided Mol Des; 2012 Jul; 26(7):847-64. PubMed ID: 22639079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene overexpression: uses, mechanisms, and interpretation.
    Prelich G
    Genetics; 2012 Mar; 190(3):841-54. PubMed ID: 22419077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators.
    Hahn S; Young ET
    Genetics; 2011 Nov; 189(3):705-36. PubMed ID: 22084422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid GAL gene switch of Saccharomyces cerevisiae depends on nuclear Gal3, not nucleocytoplasmic trafficking of Gal3 and Gal80.
    Egriboz O; Jiang F; Hopper JE
    Genetics; 2011 Nov; 189(3):825-36. PubMed ID: 21890741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general mechanism for network-dosage compensation in gene circuits.
    Acar M; Pando BF; Arnold FH; Elowitz MB; van Oudenaarden A
    Science; 2010 Sep; 329(5999):1656-60. PubMed ID: 20929850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inducible gene expression: diverse regulatory mechanisms.
    Weake VM; Workman JL
    Nat Rev Genet; 2010 Jun; 11(6):426-37. PubMed ID: 20421872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.