BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 8628664)

  • 1. The C-terminal region of Drosophila heat shock factor (HSF) contains a constitutively functional transactivation domain.
    Wisniewski J; Orosz A; Allada R; Wu C
    Nucleic Acids Res; 1996 Jan; 24(2):367-74. PubMed ID: 8628664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulatory domain of human heat shock transcription factor-2 is not regulated by hemin or heat shock.
    Zhu Z; Mivechi NF
    J Cell Biochem; 1999 Apr; 73(1):56-69. PubMed ID: 10088724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The carboxyl-terminal transactivation domain of heat shock factor 1 is negatively regulated and stress responsive.
    Shi Y; Kroeger PE; Morimoto RI
    Mol Cell Biol; 1995 Aug; 15(8):4309-18. PubMed ID: 7623825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the C-terminal activator domain in yeast heat shock factor: independent control of transient and sustained transcriptional activity.
    Chen Y; Barlev NA; Westergaard O; Jakobsen BK
    EMBO J; 1993 Dec; 12(13):5007-18. PubMed ID: 8262043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and expression of a hexameric Drosophila heat shock factor subject to negative regulation.
    Clos J; Westwood JT; Becker PB; Wilson S; Lambert K; Wu C
    Cell; 1990 Nov; 63(5):1085-97. PubMed ID: 2257625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-dependent regulation of a heterologous transcriptional activation domain fused to yeast heat shock transcription factor.
    Bonner JJ; Heyward S; Fackenthal DL
    Mol Cell Biol; 1992 Mar; 12(3):1021-30. PubMed ID: 1545786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of human heat shock factor trimerization by the linker domain.
    Liu PC; Thiele DJ
    J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis heat shock factor is constitutively active in Drosophila and human cells.
    Hübel A; Lee JH; Wu C; Schöffl F
    Mol Gen Genet; 1995 Jul; 248(2):136-41. PubMed ID: 7651336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The GCN4 leucine zipper can functionally substitute for the heat shock transcription factor's trimerization domain.
    Drees BL; Grotkopp EK; Nelson HC
    J Mol Biol; 1997 Oct; 273(1):61-74. PubMed ID: 9367746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of the yeast heat shock transcription factor is implicated in gene-specific activation dependent on the architecture of the heat shock element.
    Hashikawa N; Sakurai H
    Mol Cell Biol; 2004 May; 24(9):3648-59. PubMed ID: 15082761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and expression of a human heat shock factor, HSF1.
    Rabindran SK; Giorgi G; Clos J; Wu C
    Proc Natl Acad Sci U S A; 1991 Aug; 88(16):6906-10. PubMed ID: 1871105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Function of the C-terminal transactivation domain of human heat shock factor 2 is modulated by the adjacent negative regulatory segment.
    Yoshima T; Yura T; Yanagi H
    Nucleic Acids Res; 1998 Jun; 26(11):2580-5. PubMed ID: 9592140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock element architecture is an important determinant in the temperature and transactivation domain requirements for heat shock transcription factor.
    Santoro N; Johansson N; Thiele DJ
    Mol Cell Biol; 1998 Nov; 18(11):6340-52. PubMed ID: 9774650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of the DNA-binding ability of human heat shock transcription factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure.
    Zuo J; Baler R; Dahl G; Voellmy R
    Mol Cell Biol; 1994 Nov; 14(11):7557-68. PubMed ID: 7935471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation.
    Andrulis ED; Guzmán E; Döring P; Werner J; Lis JT
    Genes Dev; 2000 Oct; 14(20):2635-49. PubMed ID: 11040217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin landscape dictates HSF binding to target DNA elements.
    Guertin MJ; Lis JT
    PLoS Genet; 2010 Sep; 6(9):e1001114. PubMed ID: 20844575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.