These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 8628760)

  • 1. The photochemistry of the retinoids as studied by steady-state and pulsed methods.
    Dillon J; Gaillard ER; Bilski P; Chignell CF; Reszka KJ
    Photochem Photobiol; 1996 May; 63(5):680-5. PubMed ID: 8628760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental effects on the photochemistry of A2-E, a component of human retinal lipofuscin.
    Ragauskaite L; Heckathorn RC; Gaillard ER
    Photochem Photobiol; 2001 Sep; 74(3):483-8. PubMed ID: 11594065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of all-trans-retinal as a photooxidizing agent.
    Harper WS; Gaillard ER
    Photochem Photobiol; 2001 Jan; 73(1):71-6. PubMed ID: 11202369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanistic study of the photooxidation of A2E, a component of human retinal lipofuscin.
    Gaillard ER; Avalle LB; Keller LM; Wang Z; Reszka KJ; Dillon JP
    Exp Eye Res; 2004 Sep; 79(3):313-9. PubMed ID: 15336493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the aerobic photoreactivity of A2E with its precursor retinal.
    Pawlak A; Wrona M; Rózanowska M; Zareba M; Lamb LE; Roberts JE; Simon JD; Sarna T
    Photochem Photobiol; 2003 Mar; 77(3):253-8. PubMed ID: 12685651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Singlet-oxygen generation from A2E.
    Kanofsky JR; Sima PD; Richter C
    Photochem Photobiol; 2003 Mar; 77(3):235-42. PubMed ID: 12685649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids.
    Belyaeva OV; Korkina OV; Stetsenko AV; Kim T; Nelson PS; Kedishvili NY
    Biochemistry; 2005 May; 44(18):7035-47. PubMed ID: 15865448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse radiolysis study of the interaction of retinoids with peroxyl radicals.
    Rózanowska M; Cantrell A; Edge R; Land EJ; Sarna T; Truscott TG
    Free Radic Biol Med; 2005 Nov; 39(10):1399-405. PubMed ID: 16257649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal damage by light: possible implication of singlet oxygen.
    Delmelle M
    Biophys Struct Mech; 1977 Jun; 3(2):195-8. PubMed ID: 890057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media.
    Rózanowska M; Wessels J; Boulton M; Burke JM; Rodgers MA; Truscott TG; Sarna T
    Free Radic Biol Med; 1998 May; 24(7-8):1107-12. PubMed ID: 9626564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodecomposition of vitamin A and photobiological implications for the skin.
    Fu PP; Xia Q; Yin JJ; Cherng SH; Yan J; Mei N; Chen T; Boudreau MD; Howard PC; Wamer WG
    Photochem Photobiol; 2007; 83(2):409-24. PubMed ID: 17576350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The photochemistry of human retinal lipofuscin as studied by EPR.
    Reszka K; Eldred GE; Wang RH; Chignell C; Dillon J
    Photochem Photobiol; 1995 Dec; 62(6):1005-8. PubMed ID: 8570736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual cycle in the mammalian eye. Retinoid-binding proteins and the distribution of 11-cis retinoids.
    Bridges CD; Alvarez RA; Fong SL; Gonzalez-Fernandez F; Lam DM; Liou GI
    Vision Res; 1984; 24(11):1581-94. PubMed ID: 6543481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Retinal-sensitized photo-oxidation of rhodopsin].
    Starostin AV; Fedorovich IB; Ostrovskiĭ MA
    Biofizika; 1985; 30(6):995-9. PubMed ID: 4074767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the pKa of the bacteriorhodopsin Schiff base by use of artificial retinal analogues.
    Sheves M; Albeck A; Friedman N; Ottolenghi M
    Proc Natl Acad Sci U S A; 1986 May; 83(10):3262-6. PubMed ID: 3458179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Mechanism of glutathione oxidation by photosensitized retinal].
    Starostin AV; Fedorovich IB; Ostrovskiĭ MA
    Biofizika; 1984; 29(2):344-5. PubMed ID: 6326861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectral and mass characterization of kinetic conversion from retinoids to retinoic acid in an in vitro 3-D human skin equivalent model.
    Kim JE; Lee DY; Choi J; Hong YD; Nam J; Park WS; Shim SM
    Eur J Pharm Sci; 2024 Jul; 198():106784. PubMed ID: 38705422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual pigments. V. Ground and excited-state acid dissociation constants of protonated all-trans retinal schiff base and correlation with theory.
    Schaffer AM; Yamaoka T; Becker RS
    Photochem Photobiol; 1975 May; 21(5):297-301. PubMed ID: 1208656
    [No Abstract]   [Full Text] [Related]  

  • 20. Phototransduction by vertebrate ultraviolet visual pigments: protonation of the retinylidene Schiff base following photobleaching.
    Dukkipati A; Kusnetzow A; Babu KR; Ramos L; Singh D; Knox BE; Birge RR
    Biochemistry; 2002 Aug; 41(31):9842-51. PubMed ID: 12146950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.