These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 8629492)

  • 1. Hypoxic ventilatory depression may be due to central chemoreceptor cell hyperpolarization.
    Severinghaus JW
    Adv Exp Med Biol; 1995; 393():257-60. PubMed ID: 8629492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The chemoreflex control of breathing and its measurement.
    Duffin J
    Can J Anaesth; 1990 Nov; 37(8):933-42. PubMed ID: 2123750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ventilatory effects of sustained isocapnic hypoxia during exercise in humans.
    Pandit JJ; Robbins PA
    Respir Physiol; 1991 Dec; 86(3):393-404. PubMed ID: 1788498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmented hypoxic ventilatory response in men at altitude.
    Sato M; Severinghaus JW; Powell FL; Xu FD; Spellman MJ
    J Appl Physiol (1985); 1992 Jul; 73(1):101-7. PubMed ID: 1506356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in peripheral chemoreflex sensitivity during sustained, isocapnic hypoxia.
    Bascom DA; Clement ID; Cunningham DA; Painter R; Robbins PA
    Respir Physiol; 1990 Nov; 82(2):161-76. PubMed ID: 2127465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medullary and carotid chemoreceptor interaction for mild stimuli.
    Adams JM; Attinger FM; Attinger EO
    Pflugers Arch; 1978 Apr; 374(1):39-45. PubMed ID: 567331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia.
    Heeringa J; Berkenbosch A; de Goede J; Olievier CN
    Respir Physiol; 1979 Aug; 37(3):365-79. PubMed ID: 493756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration of peripheral and central chemoreceptor stimuli by pontine and medullary respiratory centers.
    St John WM
    Fed Proc; 1977 Sep; 36(10):2421-7. PubMed ID: 330252
    [No Abstract]   [Full Text] [Related]  

  • 9. Destabilization of the respiratory control by hypoxic ventilatory depressions: a model analysis.
    Takahashi E; Doi K
    Jpn J Physiol; 1993; 43(5):599-612. PubMed ID: 8145400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the medullary respiratory network of the cat to hypoxia.
    Richter DW; Bischoff A; Anders K; Bellingham M; Windhorst U
    J Physiol; 1991 Nov; 443():231-56. PubMed ID: 1822528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kainic acid on the rat ventral medullary surface depresses hypoxic and hypercapnic ventilatory responses.
    Martin RL; Sinclair JD
    Respir Physiol; 1990 Apr; 80(1):55-70. PubMed ID: 2114662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The roles of medullary extracellular and cerebrospinal fluid pH in control of respiration.
    Kiley JP; Eldridge FL; Millhorn DE
    Respir Physiol; 1985 Feb; 59(2):117-30. PubMed ID: 3983482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central respiratory CO2 sensitivity at extreme hypocapnia.
    Berkenbosch A; van Beek JH; Olievier CN; De Goede J; Quanjer PH
    Respir Physiol; 1984 Jan; 55(1):95-102. PubMed ID: 6424201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolegomena. Chemoreception upstream of transmitters.
    Torrance RW
    Adv Exp Med Biol; 1996; 410():13-38. PubMed ID: 9030272
    [No Abstract]   [Full Text] [Related]  

  • 15. The reflex ventilatory responses of conscious, newborn rats to alternations of inspiratory oxygen concentration.
    Kumar P; Thomas T; Elnazir BK
    J Dev Physiol; 1992 Mar; 17(3):109-18. PubMed ID: 1527366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Hypoxic ventilatory response and hypoxic depression].
    Kimura H; Niijima M; Edo H; Tatsumi K; Honda Y; Kuriyama T
    Nihon Kyobu Shikkan Gakkai Zasshi; 1992 Dec; 30 Suppl():106-12. PubMed ID: 1306212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral chemoreceptors and human adaptation to high altitude.
    Mirrakhimov MM; Kalko TF
    Biomed Biochim Acta; 1988; 47(1):89-91. PubMed ID: 3134014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferent input from peripheral chemoreceptors in response to hypoxia and amino acid neurotransmitter generation in the medulla.
    Kazemi H; Beagle J; Maher T; Hoop B
    Adv Exp Med Biol; 1996; 410():365-9. PubMed ID: 9030326
    [No Abstract]   [Full Text] [Related]  

  • 19. Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors.
    Guyenet PG; Stornetta RL; Bayliss DA; Mulkey DK
    Exp Physiol; 2005 May; 90(3):247-53; discussion 253-7. PubMed ID: 15728136
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated model of the human ventilatory control system: the response to hypoxia.
    Ursino M; Magosso E; Avanzolini G
    Clin Physiol; 2001 Jul; 21(4):465-77. PubMed ID: 11442579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.