These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8629775)

  • 1. Newer methods of improving blood flow during CPR.
    Halperin HR; Chandra NC; Levin HR; Rayburn BK; Tsitlik JE
    Ann Emerg Med; 1996 May; 27(5):553-62. PubMed ID: 8629775
    [No Abstract]   [Full Text] [Related]  

  • 2. Augmentation of tissue perfusion by a novel compression device increases neurologically intact survival in a porcine model of prolonged cardiac arrest.
    Ikeno F; Kaneda H; Hongo Y; Sakanoue Y; Nolasco C; Emami S; Lyons J; Rezaee M
    Resuscitation; 2006 Jan; 68(1):109-18. PubMed ID: 16325982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adrenergic agonist drug administration during cardiopulmonary resuscitation.
    Lindner KH
    Crit Care Med; 1993 Sep; 21(9 Suppl):S324-5. PubMed ID: 8103444
    [No Abstract]   [Full Text] [Related]  

  • 4. HemoDynamic Duo. Improving survival from cardiac arrest using active compression-decompression CPR (ACD-CPR) with an ITD.
    Frascone RJ
    JEMS; 2014 Dec; Suppl():8-13. PubMed ID: 25630169
    [No Abstract]   [Full Text] [Related]  

  • 5. Epinephrine for resuscitation from cardiac arrest: A double-edged sword?
    Sutton RM; Berg RA; Helfaer MA
    Crit Care Med; 2009 Apr; 37(4):1518-20. PubMed ID: 19318848
    [No Abstract]   [Full Text] [Related]  

  • 6. Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs.
    Lindner KH; Pfenninger EG; Lurie KG; Schürmann W; Lindner IM; Ahnefeld FW
    Circulation; 1993 Sep; 88(3):1254-63. PubMed ID: 8353887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiology of cardiopulmonary resuscitation in children.
    Schleien CL
    Crit Care Med; 1993 Sep; 21(9 Suppl):S321-3. PubMed ID: 8365206
    [No Abstract]   [Full Text] [Related]  

  • 8. Perfusion on demand. How intrathoracic pressure regulation improves blood flow in shock & cardiac arrest.
    Manifold C
    JEMS; 2014 Dec; Suppl():1. PubMed ID: 25630167
    [No Abstract]   [Full Text] [Related]  

  • 9. Cardiopulmonary resuscitation with a novel chest compression device in a porcine model of cardiac arrest: improved hemodynamics and mechanisms.
    Halperin HR; Paradis N; Ornato JP; Zviman M; Lacorte J; Lardo A; Kern KB
    J Am Coll Cardiol; 2004 Dec; 44(11):2214-20. PubMed ID: 15582320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of cardiopulmonary bypass, high-dose epinephrine, and standard-dose epinephrine in resuscitation from post-countershock electromechanical dissociation.
    DeBehnke DJ; Angelos MG; Leasure JE
    Ann Emerg Med; 1992 Sep; 21(9):1051-7. PubMed ID: 1514715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Helping the body help itself. How intrathoracic pressure regulation therapy improves perfusion.
    Convertino VA
    JEMS; 2014 Dec; Suppl():2-7. PubMed ID: 25630168
    [No Abstract]   [Full Text] [Related]  

  • 12. Vital organ blood flow with the impedance threshold device.
    Aufderheide TP; Lurie KG
    Crit Care Med; 2006 Dec; 34(12 Suppl):S466-73. PubMed ID: 17114979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest.
    Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W
    Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel adhesive glove device (AGD) for active compression-decompression (ACD) CPR results in improved carotid blood flow and coronary perfusion pressure in piglet model of cardiac arrest.
    Udassi JP; Udassi S; Shih A; Lamb MA; Porvasnik SL; Zaritsky AL; Haque IU
    Resuscitation; 2012 Jun; 83(6):750-4. PubMed ID: 22209832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Haemodynamic effects of adrenaline (epinephrine) depend on chest compression quality during cardiopulmonary resuscitation in pigs.
    Pytte M; Kramer-Johansen J; Eilevstjønn J; Eriksen M; Strømme TA; Godang K; Wik L; Steen PA; Sunde K
    Resuscitation; 2006 Dec; 71(3):369-78. PubMed ID: 17023108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [What's new in cardiopulmonary resuscitation?].
    Prengel A; Linder KH
    Rev Esp Anestesiol Reanim; 1993; 40(6):337-9. PubMed ID: 7907807
    [No Abstract]   [Full Text] [Related]  

  • 17. The biphasic mechanism of blood flow during cardiopulmonary resuscitation: a physiologic comparison of active compression-decompression and high-impulse manual external cardiac massage.
    Tucker KJ; Khan J; Idris A; Savitt MA
    Ann Emerg Med; 1994 Nov; 24(5):895-906. PubMed ID: 7978564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiology-directed cardiopulmonary resuscitation: advances in precision monitoring during cardiac arrest.
    Marquez AM; Morgan RW; Ross CE; Berg RA; Sutton RM
    Curr Opin Crit Care; 2018 Jun; 24(3):143-150. PubMed ID: 29629927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelin-1 vasoconstriction during swine cardiopulmonary resuscitation improves coronary perfusion pressures but worsens postresuscitation outcome.
    Hilwig RW; Berg RA; Kern KB; Ewy GA
    Circulation; 2000 May; 101(17):2097-102. PubMed ID: 10790353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of sympathomimetic amines during cardiopulmonary resuscitation.
    Waller DG; Robertson CE
    Resuscitation; 1991 Oct; 22(2):181-90. PubMed ID: 1684245
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.