These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 8630099)

  • 1. Iron coordination by catechol derivative antioxidants.
    Kawabata T; Schepkin V; Haramaki N; Phadke RS; Packer L
    Biochem Pharmacol; 1996 Jun; 51(11):1569-77. PubMed ID: 8630099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of ultraviolet light-induced oxidative stress by amino acid-based iron chelators.
    Kitazawa M; Iwasaki K
    Biochim Biophys Acta; 1999 Dec; 1473(2-3):400-8. PubMed ID: 10594377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant Activity of Caffeic Acid against Iron-Induced Free Radical Generation--A Chemical Approach.
    Genaro-Mattos TC; Maurício ÂQ; Rettori D; Alonso A; Hermes-Lima M
    PLoS One; 2015; 10(6):e0129963. PubMed ID: 26098639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron chelation by chlorogenic acid as a natural antioxidant.
    Kono Y; Kashine S; Yoneyama T; Sakamoto Y; Matsui Y; Shibata H
    Biosci Biotechnol Biochem; 1998 Jan; 62(1):22-7. PubMed ID: 9501514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HTHQ (1-O-hexyl-2,3,5-trimethylhydroquinone), an anti-lipid-peroxidative compound: its chemical and biochemical characterizations.
    Hino T; Kawanishi S; Yasui H; Oka S; Sakurai H
    Biochim Biophys Acta; 1998 Sep; 1425(1):47-60. PubMed ID: 9813237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative damage shifts from lipid peroxidation to thiol arylation by catechol-containing antioxidants.
    Boots AW; Haenen GR; den Hartog GJ; Bast A
    Biochim Biophys Acta; 2002 Aug; 1583(3):279-84. PubMed ID: 12176395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant activity of adrenergic agents derived from catechol.
    Miura T; Muraoka S; Ogiso T
    Biochem Pharmacol; 1998 Jun; 55(12):2001-6. PubMed ID: 9714320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protective Mechanism of the Antioxidant Baicalein toward Hydroxyl Radical-Treated Bone Marrow-Derived Mesenchymal Stem Cells.
    Tian Y; Li X; Xie H; Wang X; Xie Y; Chen C; Chen D
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29361712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement by catechols of hydroxyl-radical formation in the presence of ferric ions and hydrogen peroxide.
    Iwahashi H; Morishita H; Ishii T; Sugata R; Kido R
    J Biochem; 1989 Mar; 105(3):429-34. PubMed ID: 2543661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA strand cleavage as a sensitive assay for the production of hydroxyl radicals by microsomes: role of cytochrome P4502E1 in the increased activity after ethanol treatment.
    Kukielka E; Cederbaum AI
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):773-9. PubMed ID: 7945202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.
    Li L; Abe Y; Kanagawa K; Shoji T; Mashino T; Mochizuki M; Tanaka M; Miyata N
    Anal Chim Acta; 2007 Sep; 599(2):315-9. PubMed ID: 17870296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nitroxide Tempo inhibits hydroxyl radical production from the Fenton-like reaction of iron(II)-citrate with hydrogen peroxide.
    Shi F; Zhang P; Mao Y; Wang C; Zheng M; Zhao Z
    Biochem Biophys Res Commun; 2017 Jan; 483(1):159-164. PubMed ID: 28042034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic and molecular aspects of the antioxidant effect of menadione in hepatic microsomes.
    Tampo Y; Yonaha M
    Arch Biochem Biophys; 1996 Oct; 334(1):163-74. PubMed ID: 8837752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of several wine polyphenols on lipid peroxidation and oxygen activation in rat liver microsomes.
    Matejková S; Gut I
    Adv Exp Med Biol; 2001; 500():275-8. PubMed ID: 11764954
    [No Abstract]   [Full Text] [Related]  

  • 16. Inorganic phosphate promotes redox cycling of iron in liver microsomes: effects on free radical reactions.
    Reinke LA; Moore DR; Rau JM; McCay PB
    Arch Biochem Biophys; 1995 Feb; 316(2):758-64. PubMed ID: 7864631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Egg yolk phosvitin inhibits hydroxyl radical formation from the fenton reaction.
    Ishikawa S; Yano Y; Arihara K; Itoh M
    Biosci Biotechnol Biochem; 2004 Jun; 68(6):1324-31. PubMed ID: 15215598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different antioxidant effects of polyphenols on lipid peroxidation and hydroxyl radicals in the NADPH-, Fe-ascorbate- and Fe-microsomal systems.
    Ozgová S; Hermánek J; Gut I
    Biochem Pharmacol; 2003 Oct; 66(7):1127-37. PubMed ID: 14505792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of ruthenium(II)-pyridylamine complexes with catechol pendants as metal binding sites.
    Kojima T; Hirasa N; Noguchi D; Ishizuka T; Miyazaki S; Shiota Y; Yoshizawa K; Fukuzumi S
    Inorg Chem; 2010 Apr; 49(8):3737-45. PubMed ID: 20329711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficacy of taurine based compounds as hydroxyl radical scavengers in silica induced peroxidation.
    Shi X; Flynn DC; Porter DW; Leonard SS; Vallyathan V; Castranova V
    Ann Clin Lab Sci; 1997; 27(5):365-74. PubMed ID: 9303176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.