These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 8630922)
1. In vitro characterization of prolactin-induced effects on proliferation in the neoplastic LNCaP, DU145, and PC3 models of the human prostate. Janssen T; Darro F; Petein M; Raviv G; Pasteels JL; Kiss R; Schulman CC Cancer; 1996 Jan; 77(1):144-9. PubMed ID: 8630922 [TBL] [Abstract][Full Text] [Related]
2. A molecular mimic of phosphorylated prolactin markedly reduced tumor incidence and size when DU145 human prostate cancer cells were grown in nude mice. Xu X; Kreye E; Kuo CB; Walker AM Cancer Res; 2001 Aug; 61(16):6098-104. PubMed ID: 11507059 [TBL] [Abstract][Full Text] [Related]
3. Variants of the human prostate LNCaP cell line as tools to study discrete components of the androgen-mediated proliferative response. Soto AM; Lin TM; Sakabe K; Olea N; Damassa DA; Sonnenschein C Oncol Res; 1995; 7(10-11):545-58. PubMed ID: 8866667 [TBL] [Abstract][Full Text] [Related]
4. Androgen up-regulates epidermal growth factor receptor expression and binding affinity in PC3 cell lines expressing the human androgen receptor. Brass AL; Barnard J; Patai BL; Salvi D; Rukstalis DB Cancer Res; 1995 Jul; 55(14):3197-203. PubMed ID: 7606741 [TBL] [Abstract][Full Text] [Related]
5. Melatonin and prostate cancer cell proliferation: interplay with castration, epidermal growth factor, and androgen sensitivity. Siu SW; Lau KW; Tam PC; Shiu SY Prostate; 2002 Jul; 52(2):106-22. PubMed ID: 12111702 [TBL] [Abstract][Full Text] [Related]
6. Inhibitory effects of digitalis on the proliferation of androgen dependent and independent prostate cancer cells. Yeh JY; Huang WJ; Kan SF; Wang PS J Urol; 2001 Nov; 166(5):1937-42. PubMed ID: 11586264 [TBL] [Abstract][Full Text] [Related]
7. Androgen and taxol cause cell type-specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent DU145 prostate cancer cells. Schatten H; Ripple M; Balczon R; Weindruch R; Chakrabarti A; Taylor M; Hueser CN J Cell Biochem; 2000 Jan; 76(3):463-77. PubMed ID: 10649443 [TBL] [Abstract][Full Text] [Related]
8. Increased expression of heparin binding EGF (HB-EGF), amphiregulin, TGF alpha and epiregulin in androgen-independent prostate cancer cell lines. Tørring N; Jørgensen PE; Sørensen BS; Nexø E Anticancer Res; 2000; 20(1A):91-5. PubMed ID: 10769639 [TBL] [Abstract][Full Text] [Related]
9. Establishment and characterization of androgen-independent human prostate cancer cell lines, LN-REC4 and LNCaP-SF, from LNCaP. Iwasa Y; Mizokami A; Miwa S; Koshida K; Namiki M Int J Urol; 2007 Mar; 14(3):233-9. PubMed ID: 17430262 [TBL] [Abstract][Full Text] [Related]
10. Drug resistance in prostate cancer cell lines is influenced by androgen dependence and p53 status. Serafin AM; Akudugu JM; Bohm L Urol Res; 2002 Oct; 30(5):289-94. PubMed ID: 12389116 [TBL] [Abstract][Full Text] [Related]
11. PC3, but not DU145, human prostate cancer cells retain the coregulators required for tumor suppressor ability of androgen receptor. Litvinov IV; Antony L; Dalrymple SL; Becker R; Cheng L; Isaacs JT Prostate; 2006 Sep; 66(12):1329-38. PubMed ID: 16835890 [TBL] [Abstract][Full Text] [Related]
12. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Okamoto M; Lee C; Oyasu R Cancer Res; 1997 Jan; 57(1):141-6. PubMed ID: 8988055 [TBL] [Abstract][Full Text] [Related]
13. Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6) treatment express IL-6 and acquire an IL-6 partially resistant phenotype. Hobisch A; Ramoner R; Fuchs D; Godoy-Tundidor S; Bartsch G; Klocker H; Culig Z Clin Cancer Res; 2001 Sep; 7(9):2941-8. PubMed ID: 11555613 [TBL] [Abstract][Full Text] [Related]
14. Growth inhibition, cell-cycle dysregulation, and induction of apoptosis by green tea constituent (-)-epigallocatechin-3-gallate in androgen-sensitive and androgen-insensitive human prostate carcinoma cells. Gupta S; Ahmad N; Nieminen AL; Mukhtar H Toxicol Appl Pharmacol; 2000 Apr; 164(1):82-90. PubMed ID: 10739747 [TBL] [Abstract][Full Text] [Related]
15. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Kojima K; Ohhashi R; Fujita Y; Hamada N; Akao Y; Nozawa Y; Deguchi T; Ito M Biochem Biophys Res Commun; 2008 Aug; 373(3):423-8. PubMed ID: 18573234 [TBL] [Abstract][Full Text] [Related]
16. Effects of triptorelin, a gonadotropin-releasing hormone agonist, on the human prostatic cell lines PC3 and LNCaP. Ravenna L; Salvatori L; Morrone S; Lubrano C; Cardillo MR; Sciarra F; Frati L; Di Silverio F; Petrangeli E J Androl; 2000; 21(4):549-57. PubMed ID: 10901441 [TBL] [Abstract][Full Text] [Related]
17. Effects of bufalin and cinobufagin on the proliferation of androgen dependent and independent prostate cancer cells. Yeh JY; Huang WJ; Kan SF; Wang PS Prostate; 2003 Feb; 54(2):112-24. PubMed ID: 12497584 [TBL] [Abstract][Full Text] [Related]
18. Prostate cancer cells generated during intermittent androgen ablation acquire a growth advantage and exhibit changes in epidermal growth factor receptor expression. Hobisch A; Fiechtl M; Sandahl-Sorensen B; Godoy-Tundidor S; Artner-Dworzak E; Ramoner R; Bartsch G; Culig Z Prostate; 2004 Jun; 59(4):401-8. PubMed ID: 15065088 [TBL] [Abstract][Full Text] [Related]
19. Differential regulation by melatonin of cell growth and androgen receptor binding to the androgen response element in prostate cancer cells. Rimler A; Lupowitz Z; Zisapel N Neuro Endocrinol Lett; 2002 Apr; 23 Suppl 1():45-9. PubMed ID: 12019351 [TBL] [Abstract][Full Text] [Related]
20. Complex post-transcriptional regulation of EGF-receptor expression by EGF and TGF-alpha in human prostate cancer cells. Seth D; Shaw K; Jazayeri J; Leedman PJ Br J Cancer; 1999 May; 80(5-6):657-69. PubMed ID: 10360641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]