These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 8631125)
1. Fibre-induced lipid peroxidation leads to DNA adduct formation in Salmonella typhimurium TA104 and rat lung fibroblasts. Howden PJ; Faux SP Carcinogenesis; 1996 Mar; 17(3):413-9. PubMed ID: 8631125 [TBL] [Abstract][Full Text] [Related]
2. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 2: Oxidant activity of the fibers. Turci F; Tomatis M; Gazzano E; Riganti C; Martra G; Bosia A; Ghigo D; Fubini B J Toxicol Environ Health A; 2005 Jan; 68(1):21-39. PubMed ID: 15739802 [TBL] [Abstract][Full Text] [Related]
3. Glutathione modulates the formation of 8-hydroxydeoxyguanosine in isolated DNA and mutagenicity in Salmonella typhimurium TA100 induced by mineral fibres. Howden PJ; Faux SP Carcinogenesis; 1996 Oct; 17(10):2275-7. PubMed ID: 8895501 [TBL] [Abstract][Full Text] [Related]
4. Possible role of lipid peroxidation in the induction of NF-kappa B and AP-1 in RFL-6 cells by crocidolite asbestos: evidence following protection by vitamin E. Faux SP; Howden PJ Environ Health Perspect; 1997 Sep; 105 Suppl 5(Suppl 5):1127-30. PubMed ID: 9400711 [TBL] [Abstract][Full Text] [Related]
6. Iron-dependent formation of 8-hydroxydeoxyguanosine in isolated DNA and mutagenicity in Salmonella typhimurium TA102 induced by crocidolite. Faux SP; Howden PJ; Levy LS Carcinogenesis; 1994 Aug; 15(8):1749-51. PubMed ID: 8055658 [TBL] [Abstract][Full Text] [Related]
7. NTP technical report on the toxicity and metabolism studies of chloral hydrate (CAS No. 302-17-0). Administered by gavage to F344/N rats and B6C3F1 mice. Beland FA Toxic Rep Ser; 1999 Aug; (59):1-66, A1-E7. PubMed ID: 11803702 [TBL] [Abstract][Full Text] [Related]
8. Cytotoxicity and multinucleate giant cell formation in Chinese hamster lung fibroblast caused by crocidolite and chrysotile. Hong YC; Choi SS J Korean Med Sci; 1997 Apr; 12(2):99-104. PubMed ID: 9170013 [TBL] [Abstract][Full Text] [Related]
9. Activation of alveolar macrophages and peripheral red blood cells in rats exposed to fibers/particles. Afaq F; Abidi P; Matin R; Rahman Q Toxicol Lett; 1998 Nov; 99(3):175-82. PubMed ID: 9862283 [TBL] [Abstract][Full Text] [Related]
10. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor. Poser I; Rahman Q; Lohani M; Yadav S; Becker HH; Weiss DG; Schiffmann D; Dopp E Mutat Res; 2004 Apr; 559(1-2):19-27. PubMed ID: 15066570 [TBL] [Abstract][Full Text] [Related]
11. Role of iron in inactivation of epidermal growth factor receptor after asbestos treatment of human lung and pleural target cells. Baldys A; Aust AE Am J Respir Cell Mol Biol; 2005 May; 32(5):436-42. PubMed ID: 15626777 [TBL] [Abstract][Full Text] [Related]
12. Comparison of cytotoxicity of man-made vitreous fibres. Luoto K; Holopainen M; Sarataho M; Savolainen K Ann Occup Hyg; 1997 Jan; 41(1):37-50. PubMed ID: 9072949 [TBL] [Abstract][Full Text] [Related]
13. Buthionine sulfoximine reduces the protective capacity of myocytes to withstand peroxide-derived free radical attack. Le CT; Hollaar L; van der Valk EJ; van der Laarse A J Mol Cell Cardiol; 1993 May; 25(5):519-28. PubMed ID: 8104252 [TBL] [Abstract][Full Text] [Related]
14. Comparative proliferative and histopathologic changes in rat lungs after inhalation of chrysotile or crocidolite asbestos. BéruBé KA; Quinlan TR; Moulton G; Hemenway D; O'Shaughnessy P; Vacek P; Mossman BT Toxicol Appl Pharmacol; 1996 Mar; 137(1):67-74. PubMed ID: 8607143 [TBL] [Abstract][Full Text] [Related]
15. Arsenic increased lipid peroxidation in rat tissues by a mechanism independent of glutathione levels. Ramos O; Carrizales L; Yáñez L; Mejía J; Batres L; Ortíz D; Díaz-Barriga F Environ Health Perspect; 1995 Feb; 103 Suppl 1(Suppl 1):85-8. PubMed ID: 7621808 [TBL] [Abstract][Full Text] [Related]
16. Biological durability and oxidative potential of man-made vitreous fibres as compared to crocidolite asbestos fibres. Hippeli S; Dornisch K; Wiethege T; Gillissen A; Müller KM; Elstner EF Z Naturforsch C J Biosci; 2001; 56(7-8):633-48. PubMed ID: 11531101 [TBL] [Abstract][Full Text] [Related]
17. Production of reactive oxygen species by man-made vitreous fibres in human polymorphonuclear leukocytes. Ruotsalainen M; Hirvonen MR; Luoto K; Savolainen KM Hum Exp Toxicol; 1999 Jun; 18(6):354-62. PubMed ID: 10413242 [TBL] [Abstract][Full Text] [Related]
18. Induction of 8-hydroxydeoxyguanosine by man made vitreous fibres and crocidolite asbestos administered intraperitoneally in rats. Schürkes C; Brock W; Abel J; Unfried K Mutat Res; 2004 Sep; 553(1-2):59-65. PubMed ID: 15288533 [TBL] [Abstract][Full Text] [Related]
19. In vitro cleavage by asbestos fibers of the fifth component of human complement through free-radical generation and kallikrein activation. Governa M; Amati M; Valentino M; Visonà I; Fubini B; Botta GC; Volpe AR; Carmignani M J Toxicol Environ Health A; 2000 Apr; 59(7):539-52. PubMed ID: 10777245 [TBL] [Abstract][Full Text] [Related]
20. Stability of mineral fibres in contact with human cell cultures. An in situ μXANES, μXRD and XRF iron mapping study. Pollastri S; Gualtieri AF; Vigliaturo R; Ignatyev K; Strafella E; Pugnaloni A; Croce A Chemosphere; 2016 Dec; 164():547-557. PubMed ID: 27619065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]