BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 8631314)

  • 21. Positional information within the Mu transposase tetramer: catalytic contributions of individual monomers.
    Yang JY; Jayaram M; Harshey RM
    Cell; 1996 May; 85(3):447-55. PubMed ID: 8616899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mu transpososome architecture ensures that unfolding by ClpX or proteolysis by ClpXP remodels but does not destroy the complex.
    Burton BM; Baker TA
    Chem Biol; 2003 May; 10(5):463-72. PubMed ID: 12770828
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Duplex opening by primosome protein PriA for replisome assembly on a recombination intermediate.
    Jones JM; Nakai H
    J Mol Biol; 1999 Jun; 289(3):503-16. PubMed ID: 10356325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Mu transposition requires interaction of transposase with a DNA sequence at the Mu operator: implications for regulation.
    Mizuuchi M; Mizuuchi K
    Cell; 1989 Jul; 58(2):399-408. PubMed ID: 2546681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of bacteriophage mu transposition.
    Mizuuchi K; Craigie R
    Annu Rev Genet; 1986; 20():385-429. PubMed ID: 3028246
    [No Abstract]   [Full Text] [Related]  

  • 26. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase.
    Burton BM; Baker TA
    Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ClpP/ClpX-mediated degradation of the bacteriophage lambda O protein and regulation of lambda phage and lambda plasmid replication.
    Wegrzyn A; Czyz A; Gabig M; Wegrzyn G
    Arch Microbiol; 2000; 174(1-2):89-96. PubMed ID: 10985747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Instability of bacteriophage Mu transposase and the role of host Hfl protein.
    Gama MJ; Toussaint A; Pato ML
    Mol Microbiol; 1990 Nov; 4(11):1891-7. PubMed ID: 1964485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The phiX174-type primosome promotes replisome assembly at the site of recombination in bacteriophage Mu transposition.
    Jones JM; Nakai H
    EMBO J; 1997 Nov; 16(22):6886-95. PubMed ID: 9362501
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous expression of a bacteriophage Mu transposase and repressor: a way of preventing killing due to mini-Mu replication.
    Toussaint A; Expert D; Desmet L
    Mol Microbiol; 1991 Aug; 5(8):2011-9. PubMed ID: 1662754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly of phage Mu transpososomes: cooperative transitions assisted by protein and DNA scaffolds.
    Mizuuchi M; Baker TA; Mizuuchi K
    Cell; 1995 Nov; 83(3):375-85. PubMed ID: 8521467
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of mutations in the Mu-host junction region on transpososome assembly.
    Coros CJ; Chaconas G
    J Mol Biol; 2001 Jul; 310(2):299-309. PubMed ID: 11428891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition of bacteriophage Mu transposition by Mu repressor and Fis.
    van Drunen CM; van Zuylen C; Mientjes EJ; Goosen N; van de Putte P
    Mol Microbiol; 1993 Oct; 10(2):293-8. PubMed ID: 7934820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stoichiometric use of the transposase of bacteriophage Mu.
    Pato ML; Reich C
    Cell; 1984 Jan; 36(1):197-202. PubMed ID: 6319007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unity in transposition reactions.
    Craig NL
    Science; 1995 Oct; 270(5234):253-4. PubMed ID: 7569973
    [No Abstract]   [Full Text] [Related]  

  • 36. In vitro maturation and encapsidation of the DNA of transposable Mu-like phage D108.
    Burns CM; Chan HL; DuBow MS
    Proc Natl Acad Sci U S A; 1990 Aug; 87(16):6092-6. PubMed ID: 2166943
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The replication initiation protein of the broad-host-range plasmid RK2 is activated by the ClpX chaperone.
    Konieczny I; Helinski DR
    Proc Natl Acad Sci U S A; 1997 Dec; 94(26):14378-82. PubMed ID: 9405620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two mutations of phage mu transposase that affect strand transfer or interactions with B protein lie in distinct polypeptide domains.
    Leung PC; Harshey RM
    J Mol Biol; 1991 May; 219(2):189-99. PubMed ID: 1645409
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete transposition requires four active monomers in the mu transposase tetramer.
    Baker TA; Kremenstova E; Luo L
    Genes Dev; 1994 Oct; 8(20):2416-28. PubMed ID: 7958906
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions of the transposase with the ends of Mu: formation of specific nucleoprotein structures and non-cooperative binding of the transposase to its binding sites.
    Groenen MA; Vollering M; Krijgsman P; van Drunen K; van de Putte P
    Nucleic Acids Res; 1987 Nov; 15(21):8831-44. PubMed ID: 2825121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.