These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 8631663)
1. Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. Kadurugamuwa JL; Beveridge TJ J Bacteriol; 1996 May; 178(10):2767-74. PubMed ID: 8631663 [TBL] [Abstract][Full Text] [Related]
2. Bactericidal effect of gentamicin-induced membrane vesicles derived from Pseudomonas aeruginosa PAO1 on gram-positive bacteria. MacDonald KL; Beveridge TJ Can J Microbiol; 2002 Sep; 48(9):810-20. PubMed ID: 12455613 [TBL] [Abstract][Full Text] [Related]
3. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. Li Z; Clarke AJ; Beveridge TJ J Bacteriol; 1998 Oct; 180(20):5478-83. PubMed ID: 9765585 [TBL] [Abstract][Full Text] [Related]
4. Delivery of the non-membrane-permeative antibiotic gentamicin into mammalian cells by using Shigella flexneri membrane vesicles. Kadurugamuwa JL; Beveridge TJ Antimicrob Agents Chemother; 1998 Jun; 42(6):1476-83. PubMed ID: 9624497 [TBL] [Abstract][Full Text] [Related]
5. Effect of surface lipopolysaccharide on the nature of membrane vesicles liberated from the Gram-negative bacterium Pseudomonas aeruginosa. Nguyen TT; Saxena A; Beveridge TJ J Electron Microsc (Tokyo); 2003; 52(5):465-9. PubMed ID: 14700078 [TBL] [Abstract][Full Text] [Related]
6. Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. Kadurugamuwa JL; Beveridge TJ J Bacteriol; 1995 Jul; 177(14):3998-4008. PubMed ID: 7608073 [TBL] [Abstract][Full Text] [Related]
7. Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. Kadurugamuwa JL; Beveridge TJ J Antimicrob Chemother; 1997 Nov; 40(5):615-21. PubMed ID: 9421308 [TBL] [Abstract][Full Text] [Related]
8. A major autolysin of Pseudomonas aeruginosa: subcellular distribution, potential role in cell growth and division and secretion in surface membrane vesicles. Li Z; Clarke AJ; Beveridge TJ J Bacteriol; 1996 May; 178(9):2479-88. PubMed ID: 8626312 [TBL] [Abstract][Full Text] [Related]
9. The "hole" story of predatory outer-membrane vesicles. Clarke AJ Can J Microbiol; 2018 Sep; 64(9):589-599. PubMed ID: 30169125 [TBL] [Abstract][Full Text] [Related]
10. The role of peptidoglycan hydrolases in the formation and toxicity of Chen YC; Kalawong R; Toyofuku M; Eberl L Microlife; 2022; 3():uqac009. PubMed ID: 37229443 [TBL] [Abstract][Full Text] [Related]
12. S-layered Aneurinibacillus and Bacillus spp. are susceptible to the lytic action of Pseudomonas aeruginosa membrane vesicles. Kadurugamuwa JL; Mayer A; Messner P; Sára M; Sleytr UB; Beveridge TJ J Bacteriol; 1998 May; 180(9):2306-11. PubMed ID: 9573179 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the sodium dodecyl sulfate-stable peptidoglycan autolysins of select gram-negative pathogens by using renaturing polyacrylamide gel electrophoresis. Bernadsky G; Beveridge TJ; Clarke AJ J Bacteriol; 1994 Sep; 176(17):5225-32. PubMed ID: 7915268 [TBL] [Abstract][Full Text] [Related]
14. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Renelli M; Matias V; Lo RY; Beveridge TJ Microbiology (Reading); 2004 Jul; 150(Pt 7):2161-2169. PubMed ID: 15256559 [TBL] [Abstract][Full Text] [Related]
15. Gentamicin delivery to Burkholderia cepacia group IIIa strains via membrane vesicles from Pseudomonas aeruginosa PAO1. Allan ND; Beveridge TJ Antimicrob Agents Chemother; 2003 Sep; 47(9):2962-5. PubMed ID: 12937002 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional membrane vesicles in Pseudomonas aeruginosa. Tashiro Y; Uchiyama H; Nomura N Environ Microbiol; 2012 Jun; 14(6):1349-62. PubMed ID: 22103313 [TBL] [Abstract][Full Text] [Related]
17. The in vitro contribution of autolysins to bacterial killing elicited by amoxicillin increases with inoculum size in Enterococcus faecalis. Dubée V; Chau F; Arthur M; Garry L; Benadda S; Mesnage S; Lefort A; Fantin B Antimicrob Agents Chemother; 2011 Feb; 55(2):910-2. PubMed ID: 21098238 [TBL] [Abstract][Full Text] [Related]
18. Initial characterization of two extracellular autolysins from Pseudomonas aeruginosa PAO1. Watt SR; Clarke AJ J Bacteriol; 1994 Aug; 176(15):4784-9. PubMed ID: 7913931 [TBL] [Abstract][Full Text] [Related]
19. Periplasm, periplasmic spaces, and their relation to bacterial wall structure: novel secretion of selected periplasmic proteins from Pseudomonas aeruginosa. Beveridge TJ; Kadurugamuwa JL Microb Drug Resist; 1996; 2(1):1-8. PubMed ID: 9158716 [TBL] [Abstract][Full Text] [Related]
20. Spontaneous Prophage Induction Contributes to the Production of Membrane Vesicles by the Gram-Positive Bacterium da Silva Barreira D; Lapaquette P; Novion Ducassou J; Couté Y; Guzzo J; Rieu A mBio; 2022 Oct; 13(5):e0237522. PubMed ID: 36200778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]