BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8631791)

  • 1. A 12-residue-long polyleucine tail is sufficient to anchor synaptobrevin to the endoplasmic reticulum membrane.
    Whitley P; Grahn E; Kutay U; Rapoport TA; von Heijne G
    J Biol Chem; 1996 Mar; 271(13):7583-6. PubMed ID: 8631791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cleavage of a tail-anchored protein by signal peptidase.
    Nilsson I; Johnson AE; von Heijne G
    FEBS Lett; 2002 Apr; 516(1-3):106-8. PubMed ID: 11959113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for multiple mechanisms for membrane binding and integration via carboxyl-terminal insertion sequences.
    Kim PK; Janiak-Spens F; Trimble WS; Leber B; Andrews DW
    Biochemistry; 1997 Jul; 36(29):8873-82. PubMed ID: 9220974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane topogenesis of a type I signal-anchor protein, mouse synaptotagmin II, on the endoplasmic reticulum.
    Kida Y; Sakaguchi M; Fukuda M; Mikoshiba K; Mihara K
    J Cell Biol; 2000 Aug; 150(4):719-30. PubMed ID: 10952998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two pathways for the degradation of the H2 subunit of the asialoglycoprotein receptor in the endoplasmic reticulum.
    Yuk MH; Lodish HF
    J Cell Biol; 1993 Dec; 123(6 Pt 2):1735-49. PubMed ID: 8276894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the transmembrane topology of yeast Sec61p, an essential component of the endoplasmic reticulum translocation complex.
    Wilkinson BM; Critchley AJ; Stirling CJ
    J Biol Chem; 1996 Oct; 271(41):25590-7. PubMed ID: 8810333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane.
    Kutay U; Ahnert-Hilger G; Hartmann E; Wiedenmann B; Rapoport TA
    EMBO J; 1995 Jan; 14(2):217-23. PubMed ID: 7835332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of the endoplasmic reticulum targeting signal in vesicle-associated membrane proteins.
    Kim PK; Hollerbach C; Trimble WS; Leber B; Andrews DW
    J Biol Chem; 1999 Dec; 274(52):36876-82. PubMed ID: 10601239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane protein topology of oleosin is constrained by its long hydrophobic domain.
    Abell BM; High S; Moloney MM
    J Biol Chem; 2002 Mar; 277(10):8602-10. PubMed ID: 11673452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane.
    Heinrich SU; Rapoport TA
    EMBO J; 2003 Jul; 22(14):3654-63. PubMed ID: 12853480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning and expression of a 58-kDa cis-Golgi and intermediate compartment protein.
    Lahtinen U; Hellman U; Wernstedt C; Saraste J; Pettersson RF
    J Biol Chem; 1996 Feb; 271(8):4031-7. PubMed ID: 8626736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting and membrane-insertion of a sunflower oleosin in vitro and in Saccharomyces cerevisiae: the central hydrophobic domain contains more than one signal sequence, and directs oleosin insertion into the endoplasmic reticulum membrane using a signal anchor sequence mechanism.
    Beaudoin F; Napier JA
    Planta; 2002 Jun; 215(2):293-303. PubMed ID: 12029479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conserved membrane-spanning amino acid motif drives homomeric and supports heteromeric assembly of presynaptic SNARE proteins.
    Laage R; Rohde J; Brosig B; Langosch D
    J Biol Chem; 2000 Jun; 275(23):17481-7. PubMed ID: 10764817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural requirements for interruption of protein translocation across rough endoplasmic reticulum membrane.
    Kuroiwa T; Sakaguchi M; Mihara K; Omura T
    J Biochem; 1990 Nov; 108(5):829-34. PubMed ID: 2081736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Import of honeybee prepromelittin into the endoplasmic reticulum: structural basis for independence of SRP and docking protein.
    Müller G; Zimmermann R
    EMBO J; 1987 Jul; 6(7):2099-107. PubMed ID: 2820722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane-interactive tail of cytochrome b(5) can function as a stop-transfer sequence in concert with a signal sequence to give inversion of protein topology in the endoplasmic reticulum.
    Kaderbhai MA; Morgan R; Kaderbhai NN
    Arch Biochem Biophys; 2003 Apr; 412(2):259-66. PubMed ID: 12667490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stop-transfer function of pseudo-random amino acid segments during translocation across prokaryotic and eukaryotic membranes.
    Sääf A; Wallin E; von Heijne G
    Eur J Biochem; 1998 Feb; 251(3):821-9. PubMed ID: 9490057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insertion of a bacterial secondary transport protein in the endoplasmic reticulum membrane.
    van Geest M; Nilsson I; von Heijne G; Lolkema JS
    J Biol Chem; 1999 Jan; 274(5):2816-23. PubMed ID: 9915815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The carboxyl-terminal valine is required for transport of glycoprotein CD8 alpha from the endoplasmic reticulum to the intermediate compartment.
    Iodice L; Sarnataro S; Bonatti S
    J Biol Chem; 2001 Aug; 276(31):28920-6. PubMed ID: 11384990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of ribosomes to the rough endoplasmic reticulum mediated by the Sec61p-complex.
    Kalies KU; Görlich D; Rapoport TA
    J Cell Biol; 1994 Aug; 126(4):925-34. PubMed ID: 8051212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.