These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 8632134)
21. Effect of a ceramic and a non-ceramic hydroxyapatite on cell growth and procollagen synthesis of cultured human gingival fibroblasts. Ruano R; Jaeger RG; Jaeger MM J Periodontol; 2000 Apr; 71(4):540-5. PubMed ID: 10807115 [TBL] [Abstract][Full Text] [Related]
22. Surface free energy predominates in cell adhesion to hydroxyapatite through wettability. Nakamura M; Hori N; Ando H; Namba S; Toyama T; Nishimiya N; Yamashita K Mater Sci Eng C Mater Biol Appl; 2016 May; 62():283-92. PubMed ID: 26952425 [TBL] [Abstract][Full Text] [Related]
23. In vitro effects of calcium phosphate biomaterials on fibroblastic cell behavior. Gregoire M; Orly I; Kerebel LM; Kerebel B Biol Cell; 1987; 59(3):255-60. PubMed ID: 3038235 [TBL] [Abstract][Full Text] [Related]
24. Gene expression and cytokine release during odontogenic differentiation of human dental pulp stem cells induced by 2 endodontic biomaterials. Asgary S; Nazarian H; Khojasteh A; Shokouhinejad N J Endod; 2014 Mar; 40(3):387-92. PubMed ID: 24565658 [TBL] [Abstract][Full Text] [Related]
25. A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Nair MB; Suresh Babu S; Varma HK; John A Acta Biomater; 2008 Jan; 4(1):173-81. PubMed ID: 17804309 [TBL] [Abstract][Full Text] [Related]
26. New method of synthesis and in vitro studies of a porous biomaterial. Wers E; Lefeuvre B; Pellen-Mussi P; Novella A; Oudadesse H Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():133-42. PubMed ID: 26838833 [TBL] [Abstract][Full Text] [Related]
27. Particle size of hydroxyapatite granules calcified from red algae affects the osteogenic potential of human mesenchymal stem cells in vitro. Weissenboeck M; Stein E; Undt G; Ewers R; Lauer G; Turhani D Cells Tissues Organs; 2006; 182(2):79-88. PubMed ID: 16804298 [TBL] [Abstract][Full Text] [Related]
28. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part I. Gosain AK; Song L; Riordan P; Amarante MT; Nagy PG; Wilson CR; Toth JM; Ricci JL Plast Reconstr Surg; 2002 Feb; 109(2):619-30. PubMed ID: 11818845 [TBL] [Abstract][Full Text] [Related]
29. Influence of hydroxyapatite granule size, porosity, and crystallinity on tissue reaction in vivo. Part A: synthesis, characterization of the materials, and SEM analysis. Maté Sánchez de Val JE; Calvo-Guirado JL; Gómez-Moreno G; Pérez-Albacete Martínez C; Mazón P; De Aza PN Clin Oral Implants Res; 2016 Nov; 27(11):1331-1338. PubMed ID: 26666991 [TBL] [Abstract][Full Text] [Related]
30. In vitro proliferation and osteogenic differentiation of human dental pulp stem cells in injectable thermo-sensitive chitosan/β-glycerophosphate/hydroxyapatite hydrogel. Chen Y; Zhang F; Fu Q; Liu Y; Wang Z; Qi N J Biomater Appl; 2016 Sep; 31(3):317-27. PubMed ID: 27496540 [TBL] [Abstract][Full Text] [Related]
31. Manipulation of selective cell adhesion and growth by surface charges of electrically polarized hydroxyapatite. Ohgaki M; Kizuki T; Katsura M; Yamashita K J Biomed Mater Res; 2001 Dec; 57(3):366-73. PubMed ID: 11523031 [TBL] [Abstract][Full Text] [Related]
32. In vitro biocompatibility of hydroxyapatite-added GIC: An SEM study using human periodontal ligament fibroblasts. Thomas B; Gupta K J Esthet Restor Dent; 2017 Nov; 29(6):435-441. PubMed ID: 28703476 [TBL] [Abstract][Full Text] [Related]
33. Response of stem cells from different origins to biphasic calcium phosphate bioceramics. Lobo SE; Glickman R; da Silva WN; Arinzeh TL; Kerkis I Cell Tissue Res; 2015 Aug; 361(2):477-95. PubMed ID: 25676006 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of porous hydroxyapatite bodies by a new direct consolidation method: starch consolidation. Rodríguez-Lorenzo LM; Vallet-Regí M; Ferreira JM J Biomed Mater Res; 2002 May; 60(2):232-40. PubMed ID: 11857429 [TBL] [Abstract][Full Text] [Related]
35. The effect of porous hydroxyapatite on activities of neonatal mouse calvarial bone cells in vitro. Yeh HC; Turner DW; Tarjan G; Stern PH Northwest Dent Res; 1994; 4(2):30-2. PubMed ID: 9487942 [No Abstract] [Full Text] [Related]
36. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. He FL; Li DW; He J; Liu YY; Ahmad F; Liu YL; Deng X; Ye YJ; Yin DC Mater Sci Eng C Mater Biol Appl; 2018 May; 86():18-27. PubMed ID: 29525092 [TBL] [Abstract][Full Text] [Related]
37. Hydroxyapatite applied as direct pulp capping medicine substitutes for osteodentin. Hayashi Y; Imai M; Yanagiguchi K; Viloria IL; Ikeda T J Endod; 1999 Apr; 25(4):225-9. PubMed ID: 10425944 [TBL] [Abstract][Full Text] [Related]
38. Biological and physico-chemical assessment of hydroxyapatite (HA) with different porosity. Hornez JC; Chai F; Monchau F; Blanchemain N; Descamps M; Hildebrand HF Biomol Eng; 2007 Nov; 24(5):505-9. PubMed ID: 17900978 [TBL] [Abstract][Full Text] [Related]
39. Pulp reaction to a tricalcium phosphate ceramic capping agent. Boone ME; Kafrawy AH Oral Surg Oral Med Oral Pathol; 1979 Apr; 47(4):369-71. PubMed ID: 107502 [TBL] [Abstract][Full Text] [Related]
40. A study on improving mechanical properties of porous HA tissue engineering scaffolds by hot isostatic pressing. Zhao J; Xiao S; Lu X; Wang J; Weng J Biomed Mater; 2006 Dec; 1(4):188-92. PubMed ID: 18458404 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]