These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
728 related articles for article (PubMed ID: 8632481)
1. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity. Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481 [TBL] [Abstract][Full Text] [Related]
2. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity. Wu Y; Mikulski SM; Ardelt W; Rybak SM; Youle RJ J Biol Chem; 1993 May; 268(14):10686-93. PubMed ID: 8486718 [TBL] [Abstract][Full Text] [Related]
3. Expression and characterization of a cytotoxic human-frog chimeric ribonuclease: potential for cancer therapy. Newton DL; Xue Y; Boqué L; Wlodawer A; Kung HF; Rybak SM Protein Eng; 1997 Apr; 10(4):463-70. PubMed ID: 9194172 [TBL] [Abstract][Full Text] [Related]
4. Single amino acid substitutions at the N-terminus of a recombinant cytotoxic ribonuclease markedly influence biochemical and biological properties. Newton DL; Boque L; Wlodawer A; Huang CY; Rybak SM Biochemistry; 1998 Apr; 37(15):5173-83. PubMed ID: 9548748 [TBL] [Abstract][Full Text] [Related]
5. The structural integrity exerted by N-terminal pyroglutamate is crucial for the cytotoxicity of frog ribonuclease from Rana pipiens. Liao YD; Wang SC; Leu YJ; Wang CF; Chang ST; Hong YT; Pan YR; Chen C Nucleic Acids Res; 2003 Sep; 31(18):5247-55. PubMed ID: 12954760 [TBL] [Abstract][Full Text] [Related]
6. Ribonuclease A variants with potent cytotoxic activity. Leland PA; Schultz LW; Kim BM; Raines RT Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10407-12. PubMed ID: 9724716 [TBL] [Abstract][Full Text] [Related]
7. Analysis of the interactions of human ribonuclease inhibitor with angiogenin and ribonuclease A by mutagenesis: importance of inhibitor residues inside versus outside the C-terminal "hot spot". Shapiro R; Ruiz-Gutierrez M; Chen CZ J Mol Biol; 2000 Sep; 302(2):497-519. PubMed ID: 10970748 [TBL] [Abstract][Full Text] [Related]
8. Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer. Lee JE; Raines RT Biochemistry; 2005 Dec; 44(48):15760-7. PubMed ID: 16313179 [TBL] [Abstract][Full Text] [Related]
9. Localization and analysis of nonpolar regions in onconase. Kolbanovskaya EY; Terwisscha van Scheltinga AC; Mukhortov VG; Ardelt W; Beintema JJ; Karpeisky MY Cell Mol Life Sci; 2000 Aug; 57(8-9):1306-16. PubMed ID: 11028920 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of an antitumor ribonuclease to Purkinje neurons. Newton DL; Walbridge S; Mikulski SM; Ardelt W; Shogen K; Ackerman SJ; Rybak SM; Youle RJ J Neurosci; 1994 Feb; 14(2):538-44. PubMed ID: 8301353 [TBL] [Abstract][Full Text] [Related]
11. Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues. Narayan M; Xu G; Ripoll DR; Zhai H; Breuker K; Wanjalla C; Leung HJ; Navon A; Welker E; McLafferty FW; Scheraga HA J Mol Biol; 2004 May; 338(4):795-809. PubMed ID: 15099746 [TBL] [Abstract][Full Text] [Related]
12. Engineering receptor-mediated cytotoxicity into human ribonucleases by steric blockade of inhibitor interaction. Suzuki M; Saxena SK; Boix E; Prill RJ; Vasandani VM; Ladner JE; Sung C; Youle RJ Nat Biotechnol; 1999 Mar; 17(3):265-70. PubMed ID: 10096294 [TBL] [Abstract][Full Text] [Related]
13. [Structural-functional study of recombinant forms of onconase]. Vorob'ev II; Ponomarenko NA; Durova OM; Kozyr' AV; Demin AV; Kolesnikov AV; Sashchenko LP; Karpeĭskiĭ MIa; Gabibov AG Bioorg Khim; 2001; 27(4):257-64. PubMed ID: 11558259 [TBL] [Abstract][Full Text] [Related]
14. Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity. Lee JE; Raines RT Biochemistry; 2003 Oct; 42(39):11443-50. PubMed ID: 14516195 [TBL] [Abstract][Full Text] [Related]
15. Quantitative analysis, using MALDI-TOF mass spectrometry, of the N-terminal hydrolysis and cyclization reactions of the activation process of onconase. Ribó M; Bosch M; Torrent G; Benito A; Beaumelle B; Vilanova M Eur J Biochem; 2004 Mar; 271(6):1163-71. PubMed ID: 15009195 [TBL] [Abstract][Full Text] [Related]
16. Residues involved in the catalysis, base specificity, and cytotoxicity of ribonuclease from Rana catesbeiana based upon mutagenesis and X-ray crystallography. Leu YJ; Chern SS; Wang SC; Hsiao YY; Amiraslanov I; Liaw YC; Liao YD J Biol Chem; 2003 Feb; 278(9):7300-9. PubMed ID: 12499382 [TBL] [Abstract][Full Text] [Related]
17. Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A. Chen CZ; Shapiro R Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1761-6. PubMed ID: 9050852 [TBL] [Abstract][Full Text] [Related]
18. Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A. Rutkoski TJ; Kurten EL; Mitchell JC; Raines RT J Mol Biol; 2005 Nov; 354(1):41-54. PubMed ID: 16188273 [TBL] [Abstract][Full Text] [Related]
19. Molecular determinants in the plasma clearance and tissue distribution of ribonucleases of the ribonuclease A superfamily. Vasandani VM; Wu YN; Mikulski SM; Youle RJ; Sung C Cancer Res; 1996 Sep; 56(18):4180-6. PubMed ID: 8797589 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of HIV-1 production and selective degradation of viral RNA by an amphibian ribonuclease. Saxena SK; Gravell M; Wu YN; Mikulski SM; Shogen K; Ardelt W; Youle RJ J Biol Chem; 1996 Aug; 271(34):20783-8. PubMed ID: 8702832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]