BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

717 related articles for article (PubMed ID: 8632481)

  • 1. Role of the N terminus in RNase A homologues: differences in catalytic activity, ribonuclease inhibitor interaction and cytotoxicity.
    Boix E; Wu Y; Vasandani VM; Saxena SK; Ardelt W; Ladner J; Youle RJ
    J Mol Biol; 1996 Apr; 257(5):992-1007. PubMed ID: 8632481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cytotoxic ribonuclease. Study of the mechanism of onconase cytotoxicity.
    Wu Y; Mikulski SM; Ardelt W; Rybak SM; Youle RJ
    J Biol Chem; 1993 May; 268(14):10686-93. PubMed ID: 8486718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and characterization of a cytotoxic human-frog chimeric ribonuclease: potential for cancer therapy.
    Newton DL; Xue Y; Boqué L; Wlodawer A; Kung HF; Rybak SM
    Protein Eng; 1997 Apr; 10(4):463-70. PubMed ID: 9194172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single amino acid substitutions at the N-terminus of a recombinant cytotoxic ribonuclease markedly influence biochemical and biological properties.
    Newton DL; Boque L; Wlodawer A; Huang CY; Rybak SM
    Biochemistry; 1998 Apr; 37(15):5173-83. PubMed ID: 9548748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The structural integrity exerted by N-terminal pyroglutamate is crucial for the cytotoxicity of frog ribonuclease from Rana pipiens.
    Liao YD; Wang SC; Leu YJ; Wang CF; Chang ST; Hong YT; Pan YR; Chen C
    Nucleic Acids Res; 2003 Sep; 31(18):5247-55. PubMed ID: 12954760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribonuclease A variants with potent cytotoxic activity.
    Leland PA; Schultz LW; Kim BM; Raines RT
    Proc Natl Acad Sci U S A; 1998 Sep; 95(18):10407-12. PubMed ID: 9724716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the interactions of human ribonuclease inhibitor with angiogenin and ribonuclease A by mutagenesis: importance of inhibitor residues inside versus outside the C-terminal "hot spot".
    Shapiro R; Ruiz-Gutierrez M; Chen CZ
    J Mol Biol; 2000 Sep; 302(2):497-519. PubMed ID: 10970748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization and analysis of nonpolar regions in onconase.
    Kolbanovskaya EY; Terwisscha van Scheltinga AC; Mukhortov VG; Ardelt W; Beintema JJ; Karpeisky MY
    Cell Mol Life Sci; 2000 Aug; 57(8-9):1306-16. PubMed ID: 11028920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity of bovine seminal ribonuclease: monomer versus dimer.
    Lee JE; Raines RT
    Biochemistry; 2005 Dec; 44(48):15760-7. PubMed ID: 16313179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of an antitumor ribonuclease to Purkinje neurons.
    Newton DL; Walbridge S; Mikulski SM; Ardelt W; Shogen K; Ackerman SJ; Rybak SM; Youle RJ
    J Neurosci; 1994 Feb; 14(2):538-44. PubMed ID: 8301353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues.
    Narayan M; Xu G; Ripoll DR; Zhai H; Breuker K; Wanjalla C; Leung HJ; Navon A; Welker E; McLafferty FW; Scheraga HA
    J Mol Biol; 2004 May; 338(4):795-809. PubMed ID: 15099746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering receptor-mediated cytotoxicity into human ribonucleases by steric blockade of inhibitor interaction.
    Suzuki M; Saxena SK; Boix E; Prill RJ; Vasandani VM; Ladner JE; Sung C; Youle RJ
    Nat Biotechnol; 1999 Mar; 17(3):265-70. PubMed ID: 10096294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural-functional study of recombinant forms of onconase].
    Vorob'ev II; Ponomarenko NA; Durova OM; Kozyr' AV; Demin AV; Kolesnikov AV; Sashchenko LP; Karpeĭskiĭ MIa; Gabibov AG
    Bioorg Khim; 2001; 27(4):257-64. PubMed ID: 11558259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of active-site residues to the function of onconase, a ribonuclease with antitumoral activity.
    Lee JE; Raines RT
    Biochemistry; 2003 Oct; 42(39):11443-50. PubMed ID: 14516195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis, using MALDI-TOF mass spectrometry, of the N-terminal hydrolysis and cyclization reactions of the activation process of onconase.
    Ribó M; Bosch M; Torrent G; Benito A; Beaumelle B; Vilanova M
    Eur J Biochem; 2004 Mar; 271(6):1163-71. PubMed ID: 15009195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residues involved in the catalysis, base specificity, and cytotoxicity of ribonuclease from Rana catesbeiana based upon mutagenesis and X-ray crystallography.
    Leu YJ; Chern SS; Wang SC; Hsiao YY; Amiraslanov I; Liaw YC; Liao YD
    J Biol Chem; 2003 Feb; 278(9):7300-9. PubMed ID: 12499382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A.
    Chen CZ; Shapiro R
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1761-6. PubMed ID: 9050852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of shape-complementarity markers to create cytotoxic variants of ribonuclease A.
    Rutkoski TJ; Kurten EL; Mitchell JC; Raines RT
    J Mol Biol; 2005 Nov; 354(1):41-54. PubMed ID: 16188273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular determinants in the plasma clearance and tissue distribution of ribonucleases of the ribonuclease A superfamily.
    Vasandani VM; Wu YN; Mikulski SM; Youle RJ; Sung C
    Cancer Res; 1996 Sep; 56(18):4180-6. PubMed ID: 8797589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of HIV-1 production and selective degradation of viral RNA by an amphibian ribonuclease.
    Saxena SK; Gravell M; Wu YN; Mikulski SM; Shogen K; Ardelt W; Youle RJ
    J Biol Chem; 1996 Aug; 271(34):20783-8. PubMed ID: 8702832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.