These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 8633017)

  • 21. Diverse roles for MADS box genes in Arabidopsis development.
    Rounsley SD; Ditta GS; Yanofsky MF
    Plant Cell; 1995 Aug; 7(8):1259-69. PubMed ID: 7549482
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A characterization of the MADS-box gene family in maize.
    Mena M; Mandel MA; Lerner DR; Yanofsky MF; Schmidt RJ
    Plant J; 1995 Dec; 8(6):845-54. PubMed ID: 8580958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 24. INCOMPOSITA: a MADS-box gene controlling prophyll development and floral meristem identity in Antirrhinum.
    Masiero S; Li MA; Will I; Hartmann U; Saedler H; Huijser P; Schwarz-Sommer Z; Sommer H
    Development; 2004 Dec; 131(23):5981-90. PubMed ID: 15539492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1.
    Mandel MA; Yanofsky MF
    Plant Cell; 1995 Nov; 7(11):1763-71. PubMed ID: 8535133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular basis of the cauliflower phenotype in Arabidopsis.
    Kempin SA; Savidge B; Yanofsky MF
    Science; 1995 Jan; 267(5197):522-5. PubMed ID: 7824951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ectopic expression of the petunia MADS box gene UNSHAVEN accelerates flowering and confers leaf-like characteristics to floral organs in a dominant-negative manner.
    Ferrario S; Busscher J; Franken J; Gerats T; Vandenbussche M; Angenent GC; Immink RG
    Plant Cell; 2004 Jun; 16(6):1490-505. PubMed ID: 15155884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A MADS box transcription factor of the AP1/AGL9 subfamily is also expressed in the seed coat of pea (Pisum sativum) during development.
    Buchner P; Boutin JP
    Plant Mol Biol; 1998 Dec; 38(6):1253-5. PubMed ID: 9869431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis.
    Sundström JF; Nakayama N; Glimelius K; Irish VF
    Plant J; 2006 May; 46(4):593-600. PubMed ID: 16640596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolutionary diversity of symbiotically induced nodule MADS box genes: characterization of nmhC5, a member of a novel subfamily.
    Heard J; Caspi M; Dunn K
    Mol Plant Microbe Interact; 1997 Jul; 10(5):665-76. PubMed ID: 9204570
    [TBL] [Abstract][Full Text] [Related]  

  • 31. B and C floral organ identity functions require SEPALLATA MADS-box genes.
    Pelaz S; Ditta GS; Baumann E; Wisman E; Yanofsky MF
    Nature; 2000 May; 405(6783):200-3. PubMed ID: 10821278
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Functional analyses of genetic pathways controlling petal specification in poppy.
    Drea S; Hileman LC; de Martino G; Irish VF
    Development; 2007 Dec; 134(23):4157-66. PubMed ID: 17959716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation and characterization of the C-class MADS-box gene involved in the formation of double flowers in Japanese gentian.
    Nakatsuka T; Saito M; Yamada E; Fujita K; Yamagishi N; Yoshikawa N; Nishihara M
    BMC Plant Biol; 2015 Jul; 15():182. PubMed ID: 26183329
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana.
    Chang YY; Chiu YF; Wu JW; Yang CH
    Plant Cell Physiol; 2009 Aug; 50(8):1425-38. PubMed ID: 19541596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals.
    Prasad K; Sriram P; Kumar CS; Kushalappa K; Vijayraghavan U
    Dev Genes Evol; 2001 Jun; 211(6):281-90. PubMed ID: 11466523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plant development going MADS.
    Jack T
    Plant Mol Biol; 2001 Jul; 46(5):515-20. PubMed ID: 11516144
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary Dynamics of Floral Homeotic Transcription Factor Protein-Protein Interactions.
    Bartlett M; Thompson B; Brabazon H; Del Gizzi R; Zhang T; Whipple C
    Mol Biol Evol; 2016 Jun; 33(6):1486-501. PubMed ID: 26908583
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional analysis of three lily (Lilium longiflorum) APETALA1-like MADS box genes in regulating floral transition and formation.
    Chen MK; Lin IC; Yang CH
    Plant Cell Physiol; 2008 May; 49(5):704-17. PubMed ID: 18367516
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators.
    Kim S; Koh J; Yoo MJ; Kong H; Hu Y; Ma H; Soltis PS; Soltis DE
    Plant J; 2005 Sep; 43(5):724-44. PubMed ID: 16115069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterns of molecular evolution among paralogous floral homeotic genes.
    Lawton-Rauh AL; Buckler ES; Purugganan MD
    Mol Biol Evol; 1999 Aug; 16(8):1037-45. PubMed ID: 10474900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.