BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 8633854)

  • 1. Disruption of the yeast ATH1 gene confers better survival after dehydration, freezing, and ethanol shock: potential commercial applications.
    Kim J; Alizadeh P; Harding T; Hefner-Gravink A; Klionsky DJ
    Appl Environ Microbiol; 1996 May; 62(5):1563-9. PubMed ID: 8633854
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks.
    Jacobus AP; Cavassana SD; de Oliveira II; Barreto JA; Rohwedder E; Frazzon J; Basso TP; Basso LC; Gross J
    Biotechnol Biofuels Bioprod; 2024 May; 17(1):63. PubMed ID: 38730312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. History and Domestication of
    Lahue C; Madden AA; Dunn RR; Smukowski Heil C
    Front Genet; 2020; 11():584718. PubMed ID: 33262788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryopreservation and the Freeze-Thaw Stress Response in Yeast.
    Cabrera E; Welch LC; Robinson MR; Sturgeon CM; Crow MM; Segarra VA
    Genes (Basel); 2020 Jul; 11(8):. PubMed ID: 32707778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vacuolar hydrolysis and efflux: current knowledge and unanswered questions.
    Parzych KR; Klionsky DJ
    Autophagy; 2019 Feb; 15(2):212-227. PubMed ID: 30422029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of C-5 sterol desaturase from an edible mushroom in fisson yeast enhances its ethanol and thermotolerance.
    Kamthan A; Kamthan M; Datta A
    PLoS One; 2017; 12(3):e0173381. PubMed ID: 28278249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do yeast cells become tolerant to high ethanol concentrations?
    Snoek T; Verstrepen KJ; Voordeckers K
    Curr Genet; 2016 Aug; 62(3):475-80. PubMed ID: 26758993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae.
    Park WK; Yang JW; Kim HS
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):567-75. PubMed ID: 25613285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revisiting yeast trehalose metabolism.
    Eleutherio E; Panek A; De Mesquita JF; Trevisol E; Magalhães R
    Curr Genet; 2015 Aug; 61(3):263-74. PubMed ID: 25209979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced freeze tolerance of baker's yeast by overexpressed trehalose-6-phosphate synthase gene (TPS1) and deleted trehalase genes in frozen dough.
    Tan H; Dong J; Wang G; Xu H; Zhang C; Xiao D
    J Ind Microbiol Biotechnol; 2014 Aug; 41(8):1275-85. PubMed ID: 24951963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Candida parapsilosis the ATC1 gene encodes for an acid trehalase involved in trehalose hydrolysis, stress resistance and virulence.
    Sánchez-Fresneda R; Martínez-Esparza M; Maicas S; Argüelles JC; Valentín E
    PLoS One; 2014; 9(6):e99113. PubMed ID: 24922533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving industrial yeast strains: exploiting natural and artificial diversity.
    Steensels J; Snoek T; Meersman E; Picca Nicolino M; Voordeckers K; Verstrepen KJ
    FEMS Microbiol Rev; 2014 Sep; 38(5):947-95. PubMed ID: 24724938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solving ethanol production problems with genetically modified yeast strains.
    Abreu-Cavalheiro A; Monteiro G
    Braz J Microbiol; 2013; 44(3):665-71. PubMed ID: 24516432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production.
    Cao TS; Chi Z; Liu GL; Chi ZM
    Mol Biotechnol; 2014 Jan; 56(1):72-8. PubMed ID: 23836443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of lactose-consuming Saccharomyces cerevisiae for lactose fermentation into ethanol fuel.
    Zou J; Guo X; Shen T; Dong J; Zhang C; Xiao D
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):353-63. PubMed ID: 23344501
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1.
    Avrahami-Moyal L; Engelberg D; Wenger JW; Sherlock G; Braun S
    FEMS Yeast Res; 2012 Aug; 12(5):521-33. PubMed ID: 22443114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenotypic landscape of Saccharomyces cerevisiae during wine fermentation: evidence for origin-dependent metabolic traits.
    Camarasa C; Sanchez I; Brial P; Bigey F; Dequin S
    PLoS One; 2011; 6(9):e25147. PubMed ID: 21949874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved osmotic tolerance and ethanol production of ethanologenic Escherichia coli by IrrE, a global regulator of radiation-resistance of Deinococcus radiodurans.
    Ma R; Zhang Y; Hong H; Lu W; Lin M; Chen M; Zhang W
    Curr Microbiol; 2011 Feb; 62(2):659-64. PubMed ID: 20959988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis.
    Miranda JA; Avonce N; Suárez R; Thevelein JM; Van Dijck P; Iturriaga G
    Planta; 2007 Nov; 226(6):1411-21. PubMed ID: 17628825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the tre locus and analysis of trehalose cryoprotection in Lactobacillus acidophilus NCFM.
    Duong T; Barrangou R; Russell WM; Klaenhammer TR
    Appl Environ Microbiol; 2006 Feb; 72(2):1218-25. PubMed ID: 16461669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.