BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8633854)

  • 21. The Arabidopsis thaliana trehalase is a plasma membrane-bound enzyme with extracellular activity.
    Frison M; Parrou JL; Guillaumot D; Masquelier D; François J; Chaumont F; Batoko H
    FEBS Lett; 2007 Aug; 581(21):4010-6. PubMed ID: 17673210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses.
    Mahmud SA; Hirasawa T; Shimizu H
    J Biosci Bioeng; 2010 Mar; 109(3):262-6. PubMed ID: 20159575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae.
    Takagi H; Takaoka M; Kawaguchi A; Kubo Y
    Appl Environ Microbiol; 2005 Dec; 71(12):8656-62. PubMed ID: 16332860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The homeobox gene ATH1 of Arabidopsis is derepressed in the photomorphogenic mutants cop1 and det1.
    Quaedvlieg N; Dockx J; Rook F; Weisbeek P; Smeekens S
    Plant Cell; 1995 Jan; 7(1):117-29. PubMed ID: 7696878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components.
    Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2012 Sep; 51(4):237-43. PubMed ID: 22883559
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains.
    Bleoanca I; Silva AR; Pimentel C; Rodrigues-Pousada C; Menezes Rde A
    J Biosci Bioeng; 2013 Dec; 116(6):697-705. PubMed ID: 23838012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of acid trehalase (ATH) on impaired yeast vacuolar activity.
    Tran LM; Bang SH; Yoon J; Kim YH; Min J
    Enzyme Microb Technol; 2016 Nov; 93-94():44-50. PubMed ID: 27702484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modelling the freezing response of baker's yeast prestressed cells: a statistical approach.
    Kronberg MF; Nikel PI; Cerrutti P; Galvagno MA
    J Appl Microbiol; 2008 Mar; 104(3):716-27. PubMed ID: 17927744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae.
    Trevisol ET; Panek AD; Mannarino SC; Eleutherio EC
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):697-704. PubMed ID: 21243352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough.
    Sun X; Zhang CY; Wu MY; Fan ZH; Liu SN; Zhu WB; Xiao DG
    Microb Cell Fact; 2016 Apr; 15():54. PubMed ID: 27039899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Commercial baker's yeast stability as affected by intracellular content of trehalose, dehydration procedure and the physical properties of external matrices.
    Cerrutti P; Segovia de Huergo M; Galvagno M; Schebor C; del Pilar Buera M
    Appl Microbiol Biotechnol; 2000 Oct; 54(4):575-80. PubMed ID: 11092635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Response to oxidative stress caused by H(2)O(2) in Saccharomyces cerevisiae mutants deficient in trehalase genes.
    Pedreño Y; Gimeno-Alcañiz JV; Matallana E; Argüelles JC
    Arch Microbiol; 2002 Jun; 177(6):494-9. PubMed ID: 12029395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of trehalose during stress in a heat-shock resistant mutant of Saccharomyces cerevisiae.
    Eleutherio EC; Ribeiro MJ; Pereira MD; Maia FM; Panek AD
    Biochem Mol Biol Int; 1995 Aug; 36(6):1217-23. PubMed ID: 8535293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.
    Ohta E; Nakayama Y; Mukai Y; Bamba T; Fukusaki E
    J Biosci Bioeng; 2016 Apr; 121(4):399-405. PubMed ID: 26344121
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae.
    Alexandre H; Plourde L; Charpentier C; François J
    Microbiology (Reading); 1998 Apr; 144 ( Pt 4)():1103-1111. PubMed ID: 9579083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing.
    Watanabe M; Watanabe D; Akao T; Shimoi H
    J Biosci Bioeng; 2009 May; 107(5):516-8. PubMed ID: 19393550
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses.
    Kaino T; Takagi H
    Appl Microbiol Biotechnol; 2008 May; 79(2):273-83. PubMed ID: 18351334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering of Saccharomyces cerevisiae for improvement in stresses tolerance.
    Divate NR; Chen GH; Divate RD; Ou BR; Chung YC
    Bioengineered; 2017 Sep; 8(5):524-535. PubMed ID: 27937123
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving freeze-tolerance of baker's yeast through seamless gene deletion of NTH1 and PUT1.
    Dong J; Chen D; Wang G; Zhang C; Du L; Liu S; Zhao Y; Xiao D
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):817-28. PubMed ID: 26965428
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.