These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 8633857)
1. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Bogan BW; Lamar RT Appl Environ Microbiol; 1996 May; 62(5):1597-603. PubMed ID: 8633857 [TBL] [Abstract][Full Text] [Related]
2. A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi. Lee AH; Lee H; Heo YM; Lim YW; Kim CM; Kim GH; Chang W; Kim JJ Bioprocess Biosyst Eng; 2020 May; 43(5):767-783. PubMed ID: 31938872 [TBL] [Abstract][Full Text] [Related]
3. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. D'Souza TM; Merritt CS; Reddy CA Appl Environ Microbiol; 1999 Dec; 65(12):5307-13. PubMed ID: 10583981 [TBL] [Abstract][Full Text] [Related]
4. Degradation of phenanthrene by Phanerochaete chrysosporium occurs under ligninolytic as well as nonligninolytic conditions. Dhawale SW; Dhawale SS; Dean-Ross D Appl Environ Microbiol; 1992 Sep; 58(9):3000-6. PubMed ID: 1444413 [TBL] [Abstract][Full Text] [Related]
5. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions. Tekere M; Zvauya R; Read JS J Basic Microbiol; 2001; 41(2):115-29. PubMed ID: 11441459 [TBL] [Abstract][Full Text] [Related]
6. Effect of culture conditions on manganese peroxidase production and activity by some white rot fungi. Gill K; Arora S J Ind Microbiol Biotechnol; 2003 Jan; 30(1):28-33. PubMed ID: 12545383 [TBL] [Abstract][Full Text] [Related]
7. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. Reddy CA; D'Souza TM FEMS Microbiol Rev; 1994 Mar; 13(2-3):137-52. PubMed ID: 8167033 [TBL] [Abstract][Full Text] [Related]
8. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Novotný C; Erbanová P; Cajthaml T; Rothschild N; Dosoretz C; Sasek V Appl Microbiol Biotechnol; 2000 Dec; 54(6):850-3. PubMed ID: 11152080 [TBL] [Abstract][Full Text] [Related]
9. Enhanced removal of PAHs by Peniophora incarnata and ascertainment of its novel ligninolytic enzyme genes. Lee H; Jang Y; Lee YM; Lee H; Kim GH; Kim JJ J Environ Manage; 2015 Dec; 164():10-8. PubMed ID: 26342262 [TBL] [Abstract][Full Text] [Related]
10. Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Cajthaml T; Erbanová P; Kollmann A; Novotný C; Sasek V; Mougin C Folia Microbiol (Praha); 2008; 53(4):289-94. PubMed ID: 18759111 [TBL] [Abstract][Full Text] [Related]
11. Identification of a specific manganese peroxidase among ligninolytic enzymes secreted by Phanerochaete chrysosporium during wood decay. Datta A; Bettermann A; Kirk TK Appl Environ Microbiol; 1991 May; 57(5):1453-60. PubMed ID: 1854201 [TBL] [Abstract][Full Text] [Related]
12. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Pickard MA; Roman R; Tinoco R; Vazquez-Duhalt R Appl Environ Microbiol; 1999 Sep; 65(9):3805-9. PubMed ID: 10473379 [TBL] [Abstract][Full Text] [Related]
13. Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Baborová P; Möder M; Baldrian P; Cajthamlová K; Cajthaml T Res Microbiol; 2006 Apr; 157(3):248-53. PubMed ID: 16256312 [TBL] [Abstract][Full Text] [Related]
14. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes. Rüttimann-Johnson C; Lamar RT Appl Environ Microbiol; 1996 Oct; 62(10):3890-3. PubMed ID: 8967777 [TBL] [Abstract][Full Text] [Related]
15. Ubiquity of lignin-degrading peroxidases among various wood-degrading fungi. Orth AB; Royse DJ; Tien M Appl Environ Microbiol; 1993 Dec; 59(12):4017-23. PubMed ID: 8285705 [TBL] [Abstract][Full Text] [Related]
16. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus. Sethuraman A; Akin DE; Eriksson KE Appl Microbiol Biotechnol; 1999 Nov; 52(5):689-97. PubMed ID: 10570816 [TBL] [Abstract][Full Text] [Related]
17. Manganese peroxidases of the white rot fungus Phanerochaete sordida. Rüttimann-Johnson C; Cullen D; Lamar RT Appl Environ Microbiol; 1994 Feb; 60(2):599-605. PubMed ID: 8135519 [TBL] [Abstract][Full Text] [Related]
18. Degrading ability of oligocyclic aromates by Phanerochaete sordida selected via screening of white rot fungi. Lee H; Choi YS; Kim MJ; Huh NY; Kim GH; Lim YW; Kang SM; Cho ST; Kim JJ Folia Microbiol (Praha); 2010 Sep; 55(5):447-53. PubMed ID: 20941579 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation and sorption of polyaromatic hydrocarbons by Phanerochaete chrysosporium. Barclay CD; Farquhar GF; Legge RL Appl Microbiol Biotechnol; 1995 Mar; 42(6):958-63. PubMed ID: 7766094 [TBL] [Abstract][Full Text] [Related]
20. Effect of olive oil mill wastewater on extracellular ligninolytic enzymes produced by Phanerochaete flavido-alba. Ruiz JC; de la Rubia T; Pérez J; Martínez Lopez J FEMS Microbiol Lett; 2002 Jun; 212(1):41-5. PubMed ID: 12076785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]