These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 8633857)

  • 21. Correlation of brightening with cumulative enzyme activity related to lignin biodegradation during biobleaching of kraft pulp by white rot fungi in the solid-state fermentation system.
    Katagiri N; Tsutsumi Y; Nishida T
    Appl Environ Microbiol; 1995 Feb; 61(2):617-22. PubMed ID: 7574600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isoenzymes of manganese-dependent peroxidase and laccase produced by the lignin-degrading basidiomycete Ceriporiopsis subvermispora.
    Lobos S; Larraín J; Salas L; Cullen D; Vicuña R
    Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2691-8. PubMed ID: 8000540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils.
    Wang C; Sun H; Li J; Li Y; Zhang Q
    Chemosphere; 2009 Oct; 77(6):733-8. PubMed ID: 19751947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds.
    Scheel T; Höfer M; Ludwig S; Hölker U
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):686-91. PubMed ID: 11131396
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polycyclic aromatic hydrocarbon biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium.
    Ding J; Cong J; Zhou J; Gao S
    J Environ Sci (China); 2008; 20(1):88-93. PubMed ID: 18572528
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding lignin-degrading reactions of ligninolytic enzymes: binding affinity and interactional profile.
    Chen M; Zeng G; Tan Z; Jiang M; Li H; Liu L; Zhu Y; Yu Z; Wei Z; Liu Y; Xie G
    PLoS One; 2011; 6(9):e25647. PubMed ID: 21980516
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium.
    Gold MH; Alic M
    Microbiol Rev; 1993 Sep; 57(3):605-22. PubMed ID: 8246842
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium.
    Bogan BW; Schoenike B; Lamar RT; Cullen D
    Appl Environ Microbiol; 1996 Jul; 62(7):2381-6. PubMed ID: 8779576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi.
    Field JA; de Jong E; Feijoo Costa G; de Bont JA
    Appl Environ Microbiol; 1992 Jul; 58(7):2219-26. PubMed ID: 1637159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligninolytic enzyme complex of Armillaria spp.
    Stoytchev I; Nerud F
    Folia Microbiol (Praha); 2000; 45(3):248-50. PubMed ID: 11271809
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of estrogenic activity of endocrine-disrupting genistein by ligninolytic enzymes from white rot fungi.
    Tamagawa Y; Hirai H; Kawai S; Nishida T
    FEMS Microbiol Lett; 2005 Mar; 244(1):93-8. PubMed ID: 15727826
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a manganese peroxidase from white-rot fungus Trametes sp.48424 with strong ability of degrading different types of dyes and polycyclic aromatic hydrocarbons.
    Zhang H; Zhang S; He F; Qin X; Zhang X; Yang Y
    J Hazard Mater; 2016 Dec; 320():265-277. PubMed ID: 27551986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata.
    Mäkelä MR; Lundell T; Hatakka A; Hildén K
    Fungal Biol; 2013 Jan; 117(1):62-70. PubMed ID: 23332834
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nitrogen-deregulated mutants of Phanerochaete chrysosporium--a lignin-degrading basidiomycete.
    Boominathan K; Dass SB; Randall TA; Reddy CA
    Arch Microbiol; 1990; 153(6):521-7. PubMed ID: 2369262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of ligninolytic enzymes by cultures of white rot fungi.
    Górska EB; Jankiewicz U; Dobrzyński J; Agnieszka Gałązka ; Sitarek M; Gozdowski D; Russel S; Kowalczyk P
    Pol J Microbiol; 2014; 63(4):461-5. PubMed ID: 25804067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium.
    Bogan BW; Lamar RT
    Appl Environ Microbiol; 1995 Jul; 61(7):2631-5. PubMed ID: 7618875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lignin peroxidase-negative mutant of the white-rot basidiomycete Phanerochaete chrysosporium.
    Boominathan K; Dass SB; Randall TA; Kelley RL; Reddy CA
    J Bacteriol; 1990 Jan; 172(1):260-5. PubMed ID: 2294087
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes.
    Singh D; Chen S
    Appl Microbiol Biotechnol; 2008 Dec; 81(3):399-417. PubMed ID: 18810426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi.
    Hirai H; Nakanishi S; Nishida T
    Chemosphere; 2004 Apr; 55(4):641-5. PubMed ID: 15006517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.