BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 8634235)

  • 1. 113Cd nuclear magnetic resonance studies of cabbage histidinol dehydrogenase.
    Kanaori K; Uodome N; Nagai A; Ohta D; Ogawa A; Iwasaki G; Nosaka AY
    Biochemistry; 1996 May; 35(19):5949-54. PubMed ID: 8634235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of excess cadmium ion on the metal binding site of cabbage histidinol dehydrogenase studied by 113Cd-NMR spectroscopy.
    Kanaori K; Ohta D; Nosaka AY
    FEBS Lett; 1997 Jul; 412(2):301-4. PubMed ID: 9256239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state kinetics of cabbage histidinol dehydrogenase.
    Kheirolomoom A; Mano J; Nagai A; Ogawa A; Iwasaki G; Ohta D
    Arch Biochem Biophys; 1994 Aug; 312(2):493-500. PubMed ID: 8037463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutagenesis of histidinol dehydrogenase reveals roles for conserved histidine residues.
    Teng H; Grubmeyer C
    Biochemistry; 1999 Jun; 38(22):7363-71. PubMed ID: 10353848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-directed mutagenesis shows that the conserved cysteine residues of histidinol dehydrogenase are not essential for catalysis.
    Nagai A; Kheirolomoom A; Ohta D
    J Biochem; 1993 Dec; 114(6):856-61. PubMed ID: 8138543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure elucidation of the metal-binding sites in metallothionein by 113Cd NMR.
    Armitage IM; Otvos JD; Briggs RW; Boulanger Y
    Fed Proc; 1982 Nov; 41(13):2974-80. PubMed ID: 7140998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational modeling of a binding conformation of the intermediate L-histidinal to histidinol dehydrogenase.
    Gohda K; Ohta D; Iwasaki G; Ertl P; Jacob O
    J Chem Inf Comput Sci; 2001; 41(1):196-201. PubMed ID: 11206374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histidinol dehydrogenase loses its catalytic function through the mutation of His261-->Asn due to its inability to ligate the essential Zn.
    Nagai A; Ohta D
    J Biochem; 1994 Jan; 115(1):22-5. PubMed ID: 8188630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Salmonella typhimurium histidinol dehydrogenase: kinetic isotope effects and pH profiles.
    Grubmeyer C; Teng H
    Biochemistry; 1999 Jun; 38(22):7355-62. PubMed ID: 10353847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 113Cd NMR of Cd(II)-substituted Zn(II) metalloenzymes.
    Gettins P; Coleman JE
    Fed Proc; 1982 Nov; 41(13):2966-73. PubMed ID: 7140997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal coordination environment and dynamics in 113cadmium bleomycin: relationship to zinc bleomycin.
    Otvos JD; Antholine WE; Wehrli S; Petering DH
    Biochemistry; 1996 Feb; 35(5):1458-65. PubMed ID: 8634276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conserved cysteine residues of histidinol dehydrogenase are not involved in catalysis. Novel chemistry required for enzymatic aldehyde oxidation.
    Teng H; Segura E; Grubmeyer C
    J Biol Chem; 1993 Jul; 268(19):14182-8. PubMed ID: 8314784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity.
    Johnson AR; Dekker EE
    Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of Medicago truncatula L-Histidinol Dehydrogenase Show Rearrangements Required for NAD
    Ruszkowski M; Dauter Z
    Sci Rep; 2017 Sep; 7(1):10476. PubMed ID: 28874718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-virulence strategy against Brucella suis: synthesis, biological evaluation and molecular modeling of selective histidinol dehydrogenase inhibitors.
    Abdo MR; Joseph P; Mortier J; Turtaut F; Montero JL; Masereel B; Köhler S; Winum JY
    Org Biomol Chem; 2011 May; 9(10):3681-90. PubMed ID: 21461427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38.
    Johnson AR; Chen YW; Dekker EE
    Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 113Cd nuclear magnetic resonance of Cd(II) alkaline phosphatases.
    Gettins P; Coleman JE
    J Biol Chem; 1983 Jan; 258(1):396-407. PubMed ID: 6336752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 113Cd NMR in binary and ternary complexes of cadmium-substituted horse liver alcohol dehydrogenase.
    Bobsein BR; Myers RJ
    J Biol Chem; 1981 Jun; 256(11):5313-6. PubMed ID: 7016851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Definition of the redox states of cobalt-precorrinoids: investigation of the substrate and redox specificity of CbiL from Salmonella typhimurium.
    Spencer P; Stolowich NJ; Sumner LW; Scott AI
    Biochemistry; 1998 Oct; 37(42):14917-27. PubMed ID: 9778368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of histidinol dehydrogenase from cabbage.
    Nagai A; Scheidegger A
    Arch Biochem Biophys; 1991 Jan; 284(1):127-32. PubMed ID: 1989490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.